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l. INTRODUCTION

Technological developments during the last decades have provided
us with sophisticated devices which are able to collect data automatically
(satellite altimetry, Doppler methods, satellite to satellite ranging) or
semi-automatically (inertial navigation) with an enormous output rate
(e.g., almost 10® GEOS-3 altimeter data). The tendency is clear: to
reduce or eliminate manpower as much as possible in the laborious and
expensive data acquisition process. The time seems to be not far away
when this first step will have reached its perfection.

In the following steps, however, existing knowledge enters into the
data processing stage and with this knowledge enters the human intellect.
In order to make data processing faster, computers have been used
which were designed in such a way as to permit the solution of many
different kinds of problems. A relatively small number of functions is
provided by the system. It is usually up to the user to write his own pro-
grams for his own purposes. Rigorously tested subroutines are imple-
mented into program libraries. A set of programs might be combined
to a large module which would be supposedly capable of handling a
whole bunch of problems. Such kinds of modules are, in general |,
very large (e.g., a satellite orbit prediction module) and not
quite transpnarent to the user; therefore, it is highly desirable

that such a module is intelligent by itself. This means that

the module should be able to check the input (data, parameters) for con-
sistency, make adjustments if necessary and assign proper default
values to undefined parameters. Such a requirement makes it
necessary to investigate the way in which decisions are made by

intelligent human beings, to abstract this thinking process, and to

Py




translate it into a computer language., It is most interesting and often

difficult to split up fully automatic = human decision processes into

steps or statements and to find the interplay between the visual per-
ception and the processing in the brain. A typical example is the “
suppressing of drawing contours within certain regions. We shall dis-

cuss this problem in more detail in Chapter 2.8.5.

The very complexity of such a module usually makes it hard for
the user to understand -- this might be the reason why one speaks 5 1
frequently about "black boxes". GSPP, the Geodetic Science Plotting
E ; Package, is such a black box which is designed for the purpose of ]
| graphical representation of data and smooth surfaces. It is a fully
automatic link between the stages of data acquisition and interpretation
of results. In view of its great complexity and versatility it is very
smart and simple to use; this simplicity is mainly due to the control

part of GSPP which checks all parameters for consistency, makes

necessary corrections, and assigns default values to undefined parameters. ﬂ
Since one expects GSPP to be fed a large amount of data, all |
operations have been carefully checked and optimized in terms of CPU-

time.

Geodesists are used to dealing with data on and outside the surface

of the earth and to preparing contour maps of surfaces like terrain

| contour maps, gravity anomaly contour maps or geoid contour maps.
These two-dimensional representations of surfaces have -- besides

"i providing a general behavior of the surface -- the advantage of allowing

i the user to also interpolate, to some extent, the information contained in

ot A i

the contours. This makes a contour map superior to a single pro-
file as far as global numerical information is concerned and also .
superior to a three-dimensional view which provides the user a unique |

spatial image but lacks numerical information.

Lafia

2

» Therefore, contour maps are indeed unigque and this is the reason

why the present report starts with the discussion of contour maps and

not with profiles as one would expect.
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The user primarily interested in applications may skip the technical

Part A which is intended to throw light into the darkness of the black

box; he may start with Part B and consult Part A when the need arises.

2. CONTOURING

Before we start with a detailed description of the whole contouring
process it should be pointed out that GSPP is not designed for the purpose
cf representing terrain structures with all its many details as a digital
terrain model will do -- it is designed for representing smooth surfaces
without artificial structures. Such smooth surfaces are derived
from surface data located at the grid points of a regular rectangular
grid, In almost all practical applications we are, however, far away
from this ideal situation, for three reasons: first, the surface information
is sampled at points which are, in general, irregularly distributed
(terrain heights, gravity anomalies, geoidal heights); second, the data
are often heterogeneous in nature and contain surface information only
implicitly (data combinations in pnysical geodesy); third, the data are
usually disturbed by some kind of noise. All these deficiencies make

contouring a non-trivial and also non-unique task.

2.1 Data sorting and retrieving

Theoretically, all available data should be used in
order to really achieve a prediction with the minimum
variance. Practically, this is neither possible because of the enormous
amount of geodetic data collected so far, nor is it necessary: a pre-
dicted value at a peint P depends primarily on the data in the neighbor-

hood; remote data will often contribute very little to the result.

Therefore, one accepts the sub-optimal solution and takes only a relatively
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small number of data for a single prediction into account, All other
data which exceed a certain distance from the prediction point, are not
consgidered.

This would make the calculation of all distances between all data
points and all prediction points necessary, a very time consuming task
especially when working on the surface of the sphere where "expensive"
trigonometric functions are necessary in order to calculate the distance.
For this reason, it is absolutely necessary to order the data according
to some pre-selected pattern in order to be able to single out the
unnecessary part in a simple and fast way. This is also one of
the properties of data bases. It is not our intention to establish a
sophisticated data base with a very complicated tree structure; all we
want to do is to find a simple way of ordering some irregularly distributed
data.

For the sake of simplicity, we assume data to be l-point data.

Let (xi, yi), i=1, ...,n be the coordinates of a data point P, in

a Cartesian coordinate system. Then an obvious way of arranging the
data would be to select a certain "working domain", which is prefer-
ably a rectangle, by defining the boundaries of the rectangle (xL, Xy
vy yU), the lower and upper x- and y-coordinates if the rectangle
happens to be parallel to the coordinate lines. This rectangle will

then be subdivided into a number of subrectangles. The idea of the data
sorting process is to

1, findfor each data point the corresponding subrectangle (element),

2. count the number of data within each element, and

3. generate pointer vectors which allow us to find all

data points within a specific element.
Note, that all data remain at their original storage locations -- only
additional information is produced.

Let us now follow these three steps in detail:

D >l B P s hon a4
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Assume the working domain is subdivided into I # J elements
(I inx-, J in y-direction) and enumerate these elements such that
an integer (i-1)#J +j 1is assigned to the element (i,j). Then for
each data point there exists an integer which identifies an element if all
data are located within the working domain; this vector will be denoted

by a; the value of ay depends only on the position of Pk’

a, = f(Pk) .

The length of a is equal to the number of data points, At the same
time a counter vector b (length = number of elements) counts the
number of data points found in each element. After all data have been
located, b contains information about the total number of data within
each element.

The problem is to generate pointer vectors such that it is possible
to find all data within a prescribed element. For this purpose another
vector ¢ has to be generated which has the same length as b and is its
partial sum. It provides the information of the starting place in the final
pointer vector d such that the first data point in a particular element

2= (i-1) # J +j has the index
m = dlc@)],

the second data point in the same element{ has the index
m = d [c(4)+1],

the last data point in element 4 has the index
m = d [c(®) + b()-1].

If the working domain does not enclose all the data, the vectors
b and C have to be longer by 1l element such that the number of data
outside the working domain can be stored. In this case b(IxJ +1)
stores the number of data outside the working domain and d[c(I#J +1)]

is the index of the first data point found outside the working domain,
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The program responsible for this data organization job is called
OAF; it is independent and can be run separately. The time for the
organization process depends almost entirely anthe number of data and
increases linearly with the number of data. In order to give an idea
about the efficiency we give one example: ‘to order 100 000 data
according to the process described above takes 1.5 sec CPU-time on
a AMDAHL 470V /6-II computer which, in the opinion of the author,

is quite fast.
2.2 Prediction

In general, most kindsof data will be irregularly distributed, For
many reasons, however, a regular distribution (preferably on a regular

rectangular grid) would be welcomed:

a) regularly distributed data admit a simple data manage-
ment and an easy data retrieving;

b) a regular data distribution (on a rectangular grid) is
particularly important if one wants to fit a smooth surface
like a bicubic spline function to the data;

c) a regular distribution is necessary for fast post-process-
ing of data using techniques like the Fast Fourier Transform
method; but also the standard least-squares methods
would gain considerably in terms of computer time by
taking symmetries of the covariance matrix into account.

There are a number of possibilities of obtaining predicted (or inter-
polated) values. We will be discussing only two of them, the inversion-
free prediction and least-squares collocation.

2.2.1 Inversion-free prediction. In many cases we face the

following situation: there is given a huge number of data, irregularly
distributed, of a homogeneous type and almost free of errors; predict a

reasonable smooth surface. If one would like to obtain an optimal
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solution in the sense of least norm, a least-squares solution is appro-
priate. Minimizing the mean square prediction error leads to least-
squares prediction and least-squares collocation. This method, however,
requires an a priori covariance function to be known which is missing
in many kinds of problems. Moreover, an inversion of a large matrix
or many inversions of small matrices make solutions of such kind
of problems too often a very expensive task.

A simple and cheap (however, not the best) alternative is to define
the predicted value as a weighted average of all data in the neighborhood
of the prediction point. The weights will depend on the distances between
data points and the prediction point. One kind of such a prediction is

the following:

Let {fi}, i=1l,...,n be n homogeneous data; then the predicted

value at a point P is given by

fi a
q Z‘ W, f;
\ -

s
=1 iP 1
fo = ——— = (2-1)
n
2 1 S w
L 4 Lo
i=1 iP i=1
with S;p vt distance betweer. data point Pi and

prediction point P,
q ... power of prediction.

This kind of prediction has the advantage of exactly reproducing the
data and of not involving the calculation of time consuming functions
and matrix inversions. This makes it particularly useful for large-
scale applications of the type of problems discussed above.

It is quite instructive to compare this kind of prediction with

least-squares prediction:




%m': T I T I T TR S

I SR A T Rt ) e S, WA kgt i

S

RN VU GRS ——— A

Mq

Assume we are given 3 error free geoidal heights and want to pre-

dict a geoidal height at a point P. Then the inversion-free prediction

gives the result
1

fP = < (g £y + 0 £ + &5fs)
with @;, i = 1,2,3 are weights depending only on the distance between
P and all P, (and not on the distance between P, and PJ.); c is
the sum of all @; . In the case £ = {f; =f, ={; we obtain

£ =

1
P (@) t o t @) =E2 =f

OIH

and the predicted value fP is independent of the position of the prediction

point; consequently, the surface generated will be a horizontal plane. In
the case of a general vector {fi } , the surface will not be a plane
anymore, however, its trend outside the data region (here a triangle)
will be to be a plane with function value equal to the mean value of all

data., The reason is that the differences between the weights

1
o = T3 () és = -a— &

tend to zero because of the factor —,

The least-squares prediction behaves essentially different

(Cij ... covariances),

C.l Cyy

fp = [Cp) Cpy Ops

Cr st—! i’

Cyp Ca Czsi
Cy3 Caj Css_i Lfa

Under the assumptions made above ( {f;} = error-free geoidal

heights), the main diagonal elements will be constant and equal to the
variance Cj,. Assume now for a moment that the correlation length of
the covariance function C becomes very small compared with the

smallest initial distance between the data; then the covariance matrix

-

o

PR
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will be highly dominated by the diagonal and its inverse will only slightly

deviate from a purely diagonal matrix with diagonal elements being
. . 1 .
almost equal to the inverse of the variance, o The covariances

0

z , ill b FE;
B1’ CPZ CP3 will be small for large PPi’ as a consequence the

] surface will become wavy in between the data points and tend to zero
outside the data region., (In the spherical case the surface will be
such that its integral over the sphere vanishes.) For larger correlation

lengths the predicted surface will become stiffer. In any case, the i

ila

covariance function controls the surface; the "reproduction" of the
surface on the basis of its sampled data consists basically of its

"inversion",

Therefore, one main difference between both methods is that in

least-squares prediction the surface is generated by actually inverting

[p——

the surface information; in the inversion-free surface prediction,

correlations between the data are completely neglected. ‘i
A very interesting light has been thrown recently on the inversion-

free prediction (interpolation) in Sunkel, 1980). It has been shown that (2-1)

can be represented in terms of base functions Bq(x),

s

T

fP = fi B

1

o (P-Py .

1

Each base function Bq(x) can be shown to be identical with the Fourier

transform of a polynomial spline approaches a rectangle with increasing

i

H

.
r y transform of a polynomial spline of degree q-1. Since the Fourier

; }

, degree q, the base functions also approach a rectangle as the power
. of prediction increases. Ifq = ® , the "interpolation" function defined

- by (2.1) will be a pure step function.

; Figure 2.1 gives an impression of what happens if the power of

prediction is much too large. The data indicated by "+" are

! (Adigiizel, 1979).

i
|
!
f
"interpolated" by functions which are very close to step functions 3
)
t

Lt ke
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FIG. 2.1 -- Step function like interpolation for very high

powers of prediction.

On the other hand, if the power of prediction q is too small, 0 <q < 1,
the interpolation function tries to average out all data and, at the same

time, it reproduces the data; this causes the function to produce cusps
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in the neighborhood of the data points which should obviously be avoided.
Since neither steps nor peaks are what one considers as a
reasonable interpolation function, one of the often accepted compromises
is the choiceq = 2 (Schumaker, 1976, Bybee and Bedross, 1978); other
users rather prefer a value around 3.5 (Bjerhammar, 1973; Davenport
--private communication). GSPP allows the user to raake his own
choice between the limit values @ = 1.5 and q = 4, The method de-
scribed above goes back to (Shepard, 1964) and (Bjerhammar, 1973).
Another compromise is a splitting of the weight function into three

or more parts, each of which shows a different behavior (has different

powers q assigned),

r-}, 0<rs%
= .2_7.1; 1)2 .R_< s
W(r) 4(R—L),3 r R
0 R<r

This weight function, proposed by (Shepard, 1964), is continuous and
continuously differentiable and vanishes outside r> R, the radius of
prediction. Consequently, the choice of R controls the interpolation
behavior and, at the same time, deiines the prediction circle. (Al
data within this circle of radius R around the prediction point contribute
to the predicted value.) This function is the default function in GSPP

if no power of prediction is defined by the user.

2.2.2 Least-squares prediction. The inversion-free prediction

as discussed in the foregoing chapter is applicable in a very special
case, when data are homogeneous and free of noise. These assumptions
are often almost satisfied, however, the general case of heterogeneous
noisy data cannot be treated with inversion-free prediction.

As stated in the introduction, the module described here is primarily
intended for applications in geodesy, more specifically, for purposes
of the determination of the gravity field of the earth. There are many

types of data used in physical geodesy; all of them bearing information

{)
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about the gravity field, all of them are more or less noisy. The problem
is to optimally combine these data in such a way that the gravity field
determined on the basis of these data deviates from the true one as
little as possible. Least-squares collocation turned out to be particularly
useful for the solution of such kind of problems. The goodness of
the predicted field depends considerably on the covariance function intro-
duced which should match the average behavior of the gravity field as
close as possible (Schwarz and Lachapelle, 1979). For reasons of
continuity, the covariance function will be briefly described.

The general form of a homogeneous and isotropic covariance

function of the disturbing potential can be expressed by

N RE | n+l
Lo (23)
K(P,Q) = = k, <rr' Pn(cos ;,L‘PQ) (2-2)
n"No
with P,Q = points outside the sphere r = Rp ,
r,r' = geocentric radii of P and Q,

wPQ = spherical distance between P and Q,

k, = positive coefficients,

P (cosp) = Legendre polynomial of degree n,
N, = starting value of the summation (N, = 2),
Rp = radius of the Bjerhammar sphere.

K(P,Q) is symmetric with respect to P and Q and harmonic outside

the sphere r = Rp.

Geodetic measurements are, in general, nonlinear functionals of y
the gravity field (+ station position). After linearization they can be
expressed as linear functionals of the anomalous gravity field (+ station
coordinates).

In order to predict a linear functional of the gravity field at an

arbitrary point, it is first of all necessary to establish the covariance
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matrix which represents so to say the structural relation between

the gravity field and the data. An element of the covariance matrix
Cij is the result of an operation which maps the covariance function
into the real number line; the mapping consists of applying the linear
operations Li and Lj corresponding to the data i and j on the covariance

function K :

c.. = L.L.K.
3 1)

In the same way are the covariances between the predicted quantity

and the data obtained:

CPi = LPLiK'
Denoting the (linearized) vector of measurements by f as above, one

can find a simple linear relation between predicted quantities and data

(Moritz, 1978): fP = Clz C™'f, or more detailed,
— -—,_1-—- ——
fr, = [CPI’ Copprvees Cpd | Cu Cr.v. Ci £, | (2-3)
Cr Czze.. Con £;
Lcln Can Cnn__ _fn__

Taking also noise into account one has to add to C the corresponding
error covariance matrix of the data which usually happens to be
diagonal. In the general case with incorporated model parameter
determination, formula (2-3) changes slightly; however, we shall
limit ourselves to the case discussed above, The error covariances
between the predicted quantities at the points P and Q can be shown

to ejual

opq PQ P Q

the variance is obtained for Q = P (Heiskanen and Moritz, 1967; p 269 ff.)
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The covariances can be derived from a model covariance
function which should be simple in order to keep computation time low;

on the other hand it should have certain properties (represented by

essential parameters) which are determined by the general features of the
gravity field. These two requirements exclude each other, Therefore, it is
generally a rather time consuming task to find numerical values for

all covariances involved, even when using well-designed algorithms
(Tscherning, 1976).

Therefore, it has been investigated if one could get rid of this burden
by taking advantage of finite elements and approximate the covariance
function (Stnkel, 1978). The idea behind this is simple and has been
frequently applied in many fields, the network principle: generate a
net of fixed points (here grid points in a two-dimensional space) and
perform very accurate measurements at these points (here, calculate
exact covariances); these fixed points serve as a basis for small scale
measurements which can be obtained from simple devices (here, differentia-
tion - interpolation of finite elements representing the covariance func-
tion in a certain range)., The bicubic spline function turned out to be
particularly useful for such a purpose., In (Stinkel, 1979 ) such a
covariance approximation procedure has been described; a FORTRAN IV
computer program which has been designed for such purposes, is used
by GSPP. This program allows us to obtain covariances of second and
lower order derivatives of the disturbing potential at a CPU-time level
of some 3:107% sec on a IBM 370 system. This advantage, however,
is to some extent balanced by disadvantages of one needing: to know the
maximum range (in space) in which one is working, to generate a
network of covariances and store this network on a (advantageously
permanent) file before one can actually call the covariance approximation sub-
routine; and finally to realize covariances differ slightly from the exact ones
derived from the model covariance function; the differences, however,

can be kept arbitrarily small. This is the price we pay for a 90 4
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reduction in the computation time for covariances.

It should be clear that such sophisticated procedures require
decision making before actually wing the module GSPP, This means
that the covariance approximation procedure should be used only for
large scale applications -- for such a purpose it was designed. In
such cases it really pays back by saving enormous amounts of computer
time. For medium and small scale applications one can use the exact
covariances derived from some model.

Detailed information about the covariance approximation algorithm
can be found in (Siinkel, 1979 ); the principle can be briefly described
in the following:

4An important property of the covariance function which makes a
two-dimensional approximation for theoretically all points outside the
Bjerhammar sphere possible, is its dependence on essentially two variables,
the spherical distance 3 and the product rr'. Since cosy can vary only

between -1 and +1 and R}‘; / rr' has a minimum value of 0 for r—~ =

and a maximumof 1 for r = 1! =RB, the covariance function's domain of

definition is the rectangle

<
[-15¢=1, 0<s< 1]

With 2
_ %3

t=<:c>sqb,s—rr| ,

Since practically all geodetic operations are perfori'ned on or

close to the surface of the earth, the domain of definition is reduced
considerably for all practical applications, e.g., working within a

spherical distance range of 0 £y < 10° and within an altitude range

from 0 to 300 km, the domain reduces to
[0.985 st <1 , 0.999 > s >0.912] .

Once the user has made his decision about the ranges in which he

is going to work, a rectangular grid in s and t can be arranged. A
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specific program has been designed for the calculation of different kinds
of covariances at all grid points. This network of covariances has

to be calculated, The calculation itself is a three stage process: in
the first part the grid element corresponding to the particular data
location has to be found; in the second stage the necessary interpolations
and differentiations of the covariance network are pa2rformed; and in

the last part the program calculates the partial derivatives of cos )
with respect to the spherical coordinates ¢, A, ¢', \' at the particular
points P and Q. So far as covariance approximation is concerned.

The prediction program itself has control over the prediction
region, a rectangle surrounding the prediction point. This region can
be defined by the user in terms of a radius of prediction. As long as
the program finds a2 minimum number of data for a single prediction, it
is fine; if this is not the case the prediction region will be enlarged
until a minimum number of data have been found. Three different
kinds of prediction are possible, the inversion-free prediction for homo-
geneous and error-free data, least-squares prediction with accurate
covariances derived from a model covariance function, and least-
squares prediction with approximated covariances. In the case of least-
squares prediction, the system returns, apart from the predicted grid,
also the root mean square prediction errors, The calculation of these
errors can be suppressed. The predicted grid represents the surface
insofar as the bicubic spline interpolaticn function based on this grid

is interpreted as the surface in consideration.

2.3 Least-sguares regression

A surface predicted by one of the methods discussed above is
capable of representing even small and local details of the surface if the
data contain such an information. Such detailed representations can
only be described by a large number of parameters; in case of least
squares prediction the number of parameters (coefficienty is equal to

the number of data. For many reasons, however, one is often not
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only interested in the local details but also in the global features of
the field represented by the data. Such global features can be described
by a relatively small number of parameters. The problem consists of
the selection of the model, which is usually a polynomial of some degree,
in establishing the relation between the data and the model parameters
and in the solution of the linear system of a size equal to the number of
parameters. The most obvious solution is a least-squares solution.
In this context we speak about least-squares polynomial approximations
or simply about least-squares regression. Typical examples of
practical applications are trend eliminations in all natural sciences
(e.g., determination of spherical harnomic coefficients up to and including
degree and order N based on data sensitive to the earth's gravity field).
The basic idea comes from an old interpolation theorem, the
century-old Weierstrass approximation theorem and the least-squares
principle. Very loosly speaking the first theorem says that all n
coefficients of a polynomial model can uniquely be determined from n
independent data linearly related to the model. Weierstrass' theorem
asserts that a continuous function can be uniformly approximated by a
polynomial on a closed interval. The least-squares principle guarantees
the uniqueness and existence of a shortest distance between a point
(vector of data) and the hyperplane spanned by the linearly independent
base functions (polynomials 1, x, vy, x%, xvy, V%, ...,yk).* The
parameters {ai} can be immediately found from the solution of the

normal equations:

<F -%a, &> =0 (2.3-1)
with F = {fi] = {L;£} ... data (L...linear functional)

a = {a;} ... polynomial coefficients

¢ = {dﬁJ} = [Li‘pj} «+. design matrix

( ¢; ... base functions )

* (Davis, 1975, pp. 24 f£f., 107 ff., 158 ff.)
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With an a priori error covariance matrix P "lof the data, the well

known solution for the parameters is

—1
a = (QTP 3) 3 TPF ; (2.3-2)
the individual data reproduction errors are given by
AF = F - an (20 3"3)

XX the number of parameters is equal to the number of data, AF
vanishes identically (simple interpolation).

In order to avoid any misinterpretation, it should be pointed out
that least-squares polynomial approximations do by no means replace or
compete with prediction solutions based on the least-squares collocation
principle or any other prediction method; they supplement these solutions
insofar as they provide a trend information. Such trend calculations may
be quite useful for a number of problems; howcver,
the user should be warned not to work with a high degree trend poly-
nomial and to make sophisticated interpretations on the basis of the

results: polynomials show the tendency to oscillate between data and

do not hesitate to show completely abnormal features in data free regions.

(see as an example Fig. 2.2).

/
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-1.00 yig. 2.2 Least-squares regression example

2.4 Smooth surface representation

To predict values at points where no measurement has been per-

formed, is usually very expensive in terms of computer time. The
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reasons are multifold: it is necessary to compute distances between

each calculation point and theoretically all data points (this deficiency I
is shared by all prediction methods); the use of least-squares collocation
usually involves the calculation of trigonometric and/or logarithmic

functions, and the multiplication of large vectors with large matrices

for each single prediction. (We dont consider at this point the inversion

of the covariance matrix because this is independent on the number of

predictions.) Therefore, it is absolutely necessary to find a representa-

tion of the surface which is

41

a) based on the data and/or the predicted values,

h 1]
JRERSNNINUI N O

o

b) smooth,
c) local,
d) simple.

Requirement (a) is evident; a sufficient degree of smoothness is desired

in order to admit surface differentiations (slope maps, etc.),

vt i Bt e sl S st s

A

the interpolating function should be sensitive to a point disturbance only
in its neighborhood which is referred to as a local behavior; last,
but by no means least, should the interpolating fr-ction be simple in
order to make the interpolation/differentiation process fast.

Naturally, there does not exist a function which fulfills all these

Wi a e o et A e gt e et g

requirements fully. Single polynomials are not local, linear interpclating

elements are not smooth. An optimal compromise is possibly a bicubic
spline function which is sufficiently smooth (continuous second order

derivatives), is strictly local, and still a relatively simple interpolating
element. A disadvantage, however, is that bicubic spline functions are based i#
on a regular rectangular grid; smooth surfaces based on irregularly distrib-

uted data are possible; the computational effort, however, is huge. On the

other hand, a regular rectangular grid of data is anyway the most natura® way
of storing two-dimensional information, and therefore, this restriction looses
much of its power. In the following we give for the sake of completeness a

short description of spline interpolation in one and two dimensions which is a
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short outline of (Siinkel, 1980) and the procedure GSPP uses to smoothly

represent a surface based on gridded data.

2.4, 1 One-dimensional cubic spline.

The one-dimensional cubic spline is a basic tool not only for
representing a smooth curve, but also for surface fitting. The cubic
spline is just one of an infinite number of splines; its pleasant proper-
ties make it unique among all splines. It is a function which is twice
continuously differentiable and therefore very smooth. Basic for the
cubic spline is the cubic basis-spline, or simply B-spline, defined on a
grid with constant grid spacing equal to 1. (In such a case one usually
speaks of cardinal splines because of its definition on the sequence of
cardinal numbers.) Such a cardinal B-spline is a piecewise cubic
polynomial with bounded support; it is twice continuously differentiable

on the whole real line (-=, » ), Centered at the zero point, it can be

expressed by

B(x ) =-61- g_o ( -1 (i) (x +2 - k) (2.4-1)

with

- x for x>0
x, =
0 otherwise

(1.J. Schoenberg, 1973, p. 1l). Its support is the open interval
(-2,2). Explicitly written, B/x) satisfies the equations

3|x|® - 6x* +4 for 0s|x|s1
B(x) = gl -|x]® +6x* - 12]x|#8  for 1s|x|s 2
0 25 |x|

It can be seen immediately that B(x) is symmetric: B(x) = B(-x) .

Its function values at the knots are
1

B(t2) = 0, Bl =7, B(0) =% (2.4-2)

-t s

Figure 2.3 shows the cubic cardinal B-spline together with its

derivatives up to and including order 3 which is a step function.
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Given function values fk and second derivatives fk" at all

integers on the real line, it can easily be shown that

F(x) = _2; ¢, B (x-k) (2.4-3) .

reproduces the data and is 2 unique interpolating function (Stnkel, 1980).

. s . 1
The coefficients {c k} can, in fact, be expressed byck = fk- —6_flg .

In almost all practical applications, however, the second derivatives
are not known. Thercofore, the question arises whether it is possible
to find an interpolating cubic spline which is only defined on the
function values {fk} at the grid points. Or, formulated differently,

one would like to have functions §(x) such, that
F(x) = _Z, £ S (x-k) (2.4-4)

is a cubic interpolating spline. Such a function does exist
(I.J. Schoenberg, 1973); it can be expressed as a discrete convolution

of the form

S(x) = Z» cj B(x-j) (2.4-5a)
the coefficients {Qj} can be determined from the condition that

_ lfork =0
k L 0fork#0 . (2. 4-5b)

Since the cubic B-spline has non-vanishing function values at only 3
knots (-1,0, 1), it follows with (2.4-5a,b) that the infinite sum reduces '

to a sum over only 3 B-splines for S(x) = S(k):

Sk) =¢

ot B(1) + o B(0)

1), Y
k B( 1)) k’

* Oty

or explicitly ,
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S(-2) = @.3B(l) + o.,B(0) + o_yB(-1) = 0
S(-1) = e_,B(l) + o_yB(0) + @, B(-1) = 0
S(0) = o_yB(1)+ 9,B(0) + @4 B(-1) =1 (2.4-6)
S(1) = o ¢B(1) + oyB(0) + @, B(-1) = 0
s2) = oy B(1) + 9,B(0) + o5 B(-1) = 0.

Therefore, in order to find the infinite vector of coefficients
{qj} y J = =%, .s., ®, we have to solve the infinite system of

equations (2.4-6) which, with B(k) from (2.4-2), is given by

o . . . . . ] e T e 7]
01 4 1 0., 7 0
.0 1 4 1 0... 0.3 0
...0 1 41 o... To = 6| . (2.4-6)
...0 1 4 1 O... 01 0
R N L 0
5 .'.'.'.‘.d_:_‘ __Z_;

The transformation matrix is of infinite dimension, is symmetric, and
because of its "row-shift" structure of Toeplitz form, it is
circulant. Such kind of matrices are well known to have inverses of
the same type (R.M. Gray, 1971); with the help of Fourier techniques
it is fairly easy to find the solution vector ¢ . In (H. Stinkel, 1980)
it is shown in detail how the actual solution can be obtained; the
result is

o, = /3 (-2 + f3)ljl

Consequently, the cubic cardinal spline with function values equal to

(2. 4-7)
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zero apart from the zero point, where it assumes the value I, is given

by

S(x) = f3_Z (-2 + /‘3)“l B(x-j). (2.4-8)

Jts behavior can be judged from the graph shown in Figure 2.4:

1.25 ~ ~ 1.28%
1.00 ~ 1.00
0.75 - - 0.75
0.50 - L 0.50
0.25 ~ - 0.25
0.00 "‘f\\/ \//——\ =% 0.00
-0.25 | i | | I l | -0.25%
-4 -3 -2 -1 e 1 2 3 4
X

Fig. 2.4 Fundamental Cardinal Cubic Spline

This spline which is known as "fundamental cardinal cubic spline" has

unbounded support, is twice continuously differentiable, consists of

S1X)
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cubic polynomials within each interval, is symmetric and interpolates
the infinite data vector [...,0,0,1,0,0,...]. Each data vector
different from the above one can uniquely be spline-interpolated by a
linear combination of fundamental splines with the function values at the

grid points as coefficients,

F(x) = _é £ S(x-k) .

In the discussion abovc we have limited ourselves to cardinal cubic
spline interpolation on the whole real line. This is for many reasons
a restriction:
a) in all practical problems data are given on a limited
part of the real line;
b) often the data are not regularly distributed with grid
distance = 1;
c) cubic spline interpolation is just one kind of spline
interpolation; why not use another one, say quadratic

or quintic ?

There is a good reason to discuss very isolated cases: because
they show up the very behaviour of the general solution. This ic why
cardinal spline internolation has been discussed and not spline inter-
polation on an irregular limited grid of data. In such cases the formulas
are nc longer as simple (the matrix in (2.4-6)' is not as regular, but
still tri-diagonal) -- the features, however, remain the same. As
far as point (c) is concerned, there is a sinyple answer: cubic spline
interpolation has been chosen not only as a compromise between linear
interpolation and spline interpolation of highest smoothness (which is a
sinx/x - interpolation as shown in (H. Stinkel, 1980) ); it has also
been chosen for serious practical reasons: the cubic spline still
retaines a high degree of simplicity, while its attractive features

(smoothness, localness) usually adherent to more sophisticated interpola-
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tion functions, remain. Two of its properties are worth being at least
mentioned: the cubic spline minimizes the overall squared second
derivatives (which, in the case of small first derivatives, approximately
corresponds to a minimization of the overall curvature and, therefore,

the elastic energy),
j [F'"x)Pdx = min. (2.4-9)

among all possible interpolating functions. This property is called the
minimum norm property. The second one, called best approximation
property, guarantees that the interpolating spline has smaller distance
from a given function (sampled at the data points) than any other non-
interpolating spline; distance, in this context is defined via the pseudo
norm (2.4-9).

As far as approximation properties are concerned, the following

error estimates can be shown to hold (Ahlberg et al., 1967):

17 V)@ < 2% [Iptex)|ax, a=0,1 (2.4-10)

with h denoting the grid distance and f(x) the function to be approxirnated
by the cubic spline F(x). , Similar error bounds hold for second and third

derivatives.

2.4.2 Two-dimensional cubic spline.

Analogous to the one-dimensional case one can define a function

of the independent variables x and y, interpolating all data on an infinite

4]

egular vectangular grid with constant grid distance equal to 1 (cardinal
grid) such that the interpolating function is twice continuously differ-

entiable with respect to both independent variables x and y:

C-1s

F(x,y) = _Z; € B(x-k) B(y-1). (2.4-11)
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As in the one~-dimensional case, the coefficients {c kl} are not simply

the function values at the grid points, but linear combinations of function

values with derivatives. The grid information 1is hardly ever

available and, therefore,

function values at the grid points are identical with the coefficients
{c g} in (2.4-11). Thisis in fact possible; the unique fundamental

bicubic cardinal spline function is just a product of the one-dimensional

splines  discussed in Chapter 2.4.1:

F o 1

S(x,y) = Z& 0,0, B (x-i) B (x-j). (2.4-12)

This spline which is known as "fundamental cardinal bicubic spline" has
unbounded support, is twice continuously differentiable with respect to

x and y, consists of bicubic polynomials within each cell of the grid,
and interpolates the infinite data array 6k 61 :

.
.
(3 . .

000 0 0-00
0000 1 0.00
..00 0 00..

Its behavior is similar to that of the one-dimensional spline .

Figure 2.5 shows its main features.

Each data array which is different f{rom the above one can uniquely be
spline-interpolated by a linear combination of such fundamental splines

with the function values at the grid points as coefficients,

F(x,y) = Z; £, S(x-k) S(y-1). (2.4-13)

As before we have limited ourselves to the presentation of cardinal

cubic splines defined on the whole two-dimensional plane. This ideal

case will never be met in practical applications; a bounded support

e - —
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undamental bicubic cardinal spline

Fig. 2.5 F

ightly more complicated, but the main

causes the formulas to become sl

is also possible, however,

A non-uniform gri

features are retained.

GSPP

it has to be generated by lines parallel to the coordinate lines,

does not deal with such a case.
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3 Fx,v) 'l"‘ o
lrax"‘ 3 —; dxdy = min. (2.4-14)

among all possible interpolating functions (minimum norm property)

and the interpolating spline has least distance (where "distance" is

defined via the norm (2.4-14))from a given function, sampled at the

grid points, than any other non-interpolating spline (Ahlberg et.al., 1967).
As far as approximation properties are concerned, it can be shown

that the approximation error depends on the grid spacing in the following

way:

ayF(i’Y) ) Byf(x,ﬂ - o(hx3"a . hy3"a) ’
ax® axB ax? ax8

y= a+R/ <6 , @s3,8<3
and hy , hY grid distances in x and y-direction.

2.5 The frequency content of a bicubic spline surface

A bicubic spline surface is based on data (function values)
distributed on a regular rectangular grid. Formulated differently, the
bicubic interpolating spline is a smooth function interpolating all samples
of the original function.

It is well known from the sampling theorem (see e.g.

E.O. Brigham, 1974, p. 83 ff) that the original function can be
exactly reconstructed from the samples, only if the original function is
band-limited with highest frequency fmax’ and the sampling interval h
is smaller than or equal to 1/2 fmax ; the frequency 1/h = 2f .. is
called the Nyquist sampling rate.

In general, the sampled functions are not band-limited and no
interpolation function is able to exactly reproduce the original; this fact

is called aliasing.

i i i st ~MMMW“WMWMMI“‘
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To know which frequencies can be represented by a cubic inter-

polating spline is of interest by itself; moreover, since operations like

differentiations are performed not on the data but on the interpolated values, .

it is important to know how the interpolated values respond under such
operations; this can be seen best in the frequency domain.

In order to study the frequency behavior of bicubic splines, we
remember that, according to equation (2.4-13), the two-dimensional
spline base function is just a product of one-dimensional splines.
Therefore, we investigate now the frequency behavior of the one-

dimensional spline.

2.5.1 Spectrum of the cubic spline. We define the spectrun

of a function £(x) as its Fourier transform

Flw) = [x)e™ ax , 1=V (2.5-1a)
with its inverse
1 ¢ '
1 iwx -
i) = 3 J;F(w)e dw | (2.5-1b)

We are interested in the case of £(x) to be a cubic spline. There are

at least two ways of approach: a delicate®and mathematically rather

involved one which starts with the spectrum of the B-spline, takes ad-

vantage of the properties of Euler-Frobenius polynomials, and derives

the transform of fundamental cardinal cubic splines; this approach car

be found in detail in (H. Sunkel, 1980). Here a much simpler and

straight forward derivation will be given which is based on formulas

derived in (H. Sinkel, 1977a). In the following it will be assumed that .
data are given at all integers from -= to +=» and that a cubic spline
should be fitted to these data. Furthermore, the data should be such that
the integral (2.5 -la) exists. Since we know from Chapter 2.4 that the
cubic spline consists of cubic polynomials within each interval (between

two consecutive data), we can split up the integral (2.5-1a) in a countable
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infinite number of integrals, each one being extended over one interval
of length 1. Consequently, the contribution of the cubic polynomial
defined between the integers m and m+l is given by

F(m)(w) _ J‘ f(m)(x) e-iwxdx

m+1 m+1l
= I f(m)(x) coswx - i j f(m)(x) sin wx (2.5-2)
m m

with the cubic polynomial f(m)(x). Taking (2.4-...) into account,
equation (2.5-2) can be split up further into

3.
Z m) [c (w) - isl({m)(w)] (2.5-3a)
k=0

with [ak } being polynomial coefficients, and Cf{ )( w) and °ém)(w)

the real and imaginary part of the kth degree polynomial contribution

for the interval [m, m+l]:

C(m) m+l cos WX
k k
= J‘ (x-m) dx (2.5-3b)
Sk(m) m sin w x

the result of these simple integrations can be found in (H. Stnkel, 1977a,

p. 37 £f.):

Cc()m)(w) - isgm)(w) = -;:j[e-iw(mﬂ) ST ,

m -iw {m+1)
o™ 1™ = 2 1 - 8T 1. S
kK = 1,2, .. (2.5-4)

e e e e T

o e = *‘\
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After some manipulations it is possible to express the contribution of
a cubic polynomial, between the interval [m, m+1], to the spectrum

F(g) in the form

k .
. k-r
i : s .
F(m)(w) = i a(;n)e lgym —'—'%T [1-e u.oz .(}.(ﬂl:r_)T]. (2.5-5)
k=0 (i) r=0 ’
The four polynomial coefficients {a(;u)] , k70,...,3, however, depend
linearly on the function values f , f and the derivatives f* , f! .
m m+ti m mt,
The goal is *o figure out all coefficients of f , f LI, and ft
m mt’' m mt!
and finally to express f'm and flm-H by the infinite vector {fm},
m = ‘., ¢ e 0y .'

Evaluating (2.5-5) explicitly , one finds the "contribution" of
all f to be
m

o “iwm 12 “w i 6 -i

z £ e {?(l-e w)-(—»- [1-!-:0-3(1+e “11 ; (2.5-6a)
since z f e IWM o ew',z f e twm ,

m+} e m
the contribution of all £ can be shown to be
m+1}
‘ -1wrn 12 i i_ i .
;jm w) + w"' (1te wﬂ 1. (2.5-6b)

In a similar way one obtains the contributions of fl'n and f;n+1 : .
‘if' erlwmyp mly 6 otiy L By miwy (2.5-6¢)
m 0’ m e .
and Zf' ¢ lwmy e [1-%(1-;“’)]- -23,- (2+'%) ] . (2.5-64)
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i i -i .
w=2cosw and e®- e ® = 2.

sum of (2.5-6a) + (2.5-6b) and (2.5-6c) + (2.5-6d) can be written as

. i - .
introducing e Wi e sinw , the

]
-iwm ; 24 12 .
z £ e [ o {l-cos w)---(;—3 sin ¢ 1, (2.5-7a)
)
-]
. —‘ l
i) £ e wm le e - -33 (2+cos w)]. (2.5-7b)
®

There remains still f;n to be expressed by fm; it can be

shown that f;n is a linear combination of fj

N
fr = —32 a(f . -f ) (2.5—8)
m j=1 J mtj m-j

with coefficients ozj = ¢ = (-2 +f3)‘]. Taking this relation into account,

«®

4 fx'ne-lwm can be transformed into

[+ «© [ ]

Zfl',ne'mm = -32 g W Za. (£ wof )

-% ms=e-e J=1 J mvj m-]
taking advantage of the identity

[ ] x

Z T g = E a.E £,

m.‘.:..a Jm—J J m:_ﬁm

which is the frequency equivalent of a "time-shift", and interchanging

the sequences of summation over m and j, one obtains

L] -] -]

Zf. eI o [-32 a.(e‘J“’-e“J“’)]-(Z £ e
m 3 m

-® j=1 m=-®

i e St e Sl N P
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and with e % . ¢ % = 24+ gin (jw),
[ -] - ®
th P T | Za. sin(jw)]* [ 2 T it (2.5-9)
™ m j:l J m= com

Because |@&| =0.2768 <1, the first sum in above equation can

be expressed in closed form (Gradshteyn, No. 1.447, p. 40),

o sin ¢y
1-20 cosw + &

s
18

aj sin (jw) =

i=1 j

]
i

1

which, with a = -2 +v' 3 reduces to

~1Ts

i e s . 1 sin w
Ol]sm(Jw)--z Sioosw (2.5-10)

—

j:
and, with (2.5-7b), (2.5-9), and (2.5-10), the contribution of all f;‘n

to the spectrum is given by

»
.2 3w
(- 36 sin‘“w Jr11*3 sinw)°2fme1m .
w(2+cosw) w? -

Adding the contribution of fm from equation (2.5-7a), we obtain for the

whole spectrum

-
_ 12 (l-cosw)? -igm

with the identity

s (ecosgP _ , B3
4 = (=) .
2

the Fourier transform of the cubic spline is finally given by

T T - - - ——

_ e
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sm"g ®
4 ~iwm ;
Flw) = 3 (——)" Li_e . (2.5-12)
2 +cos gy 5 -®

This result is very interesting and deserves to be discussed:

Let us first investigate the summation part of F(w):

Folw) = Z ~lwm .5-
2‘“’) £ e . (2.5-13)

)

This is precisely the discrete Fourier transform of the infinite data
vector {fm] , m=-%, ,,, o (see e.g., E.O. Brigham, 1974). There-

fore, its inverse Fourier transform should again be the data vector:

£_(x) =

2
z 2

[ ]
_ __l_z J -fgym  iwx
o wfm e e dw . (2.5-14)

The integral in the above formula can also be written as

[-+)
L -]
<~y m iwx iw(x-m
Iewewdw=1e ( )dw
- -
© ©

{cos wix-m)dey + i Jp sinw (x-m) dyy .

- -

The second integral vanishes because of the asymmetry of the integrand.

The first integral can be split up into

R
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© o (2k+1)7
‘l cos ¢ (x-m)dy = Z J cos w (x-m)dx. (2.5-15a)
e k== k-ur
(2k+.1)" 2T for x = m
Since J. cosw (x-m)dw = ’
(2k-1)7 0 otherwise
the above integral is nothing else but
J cosw (x-m)dw = 27 § (x-m) (2.5-15D)

with 6(¢) the Dirac delta distribution. Therefore, f(x) in (2.5-14)

reduces to

el

— 24 £ 0215 (x-m)

f(x)

T
or
bl
flx) = -z::fmﬁ (x-m),
a sequence of impulses {fm} y M = w® .., @, called an ¥impulse

comb” (the product is to be understood in terms of distribution theory).

This concludes the inverse Fourier transform of Fs (w)e

The first part of F(y), the term

3 sin%’ 4
Slw) = 2+ cos ( W ) ’
z

is the Fourier transform of the fundamental cardinal cubic spline; this

has been proven before. Since F(y) is the product of S(w) and Fz(w),

Flw) = S(w) Fylw) ,

S e e e et 2 i
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we conclude from the convolution theorem that a cardinal cubic spline
f(x) corresponds to F{w) with £(x) being the result of a convolution of
a fundamental cardinal cubic spline S(x) with the data sequence
(sequence of impulses),

f(:;) S(x) #* Z fmb {(x-m)

= _Z;fm :[S(t) 6 (x-m-t)dt,
f(x) = Zi'mS(x-m) .

The above equation is identical with (2.4-4) and so is the circle closed.

Now we can also see the more elegant way of deriving the Fourier trans-
form of the cubic spline: find the Fourier transform of the fundamental
cardinal cubic spline and multiply it with the discrete Fourier trans-

form of the data sequence. This approach can be found in (H. Stinkel, 1980).
E(w) = 0 for

|wl> m , or in other woxrds, let Fz(w) be the Fourier transform of a

Let us once more consider Fy (') and assume that F

frequency band limited process (function). Then the sum in equation

(2.5-15) reduces to a single element, the integral

m .

J cos W (x-m)dw = 2 sin @ (x-m)
x-m

T

which, with (2.5-14), leads to the interpolation function

ifx) = Zf sin T(x-m) . (2.5-16)

-m
m T {x-m)

This function is interesting insofar as it can be shown to be an inter-

polating spline function of highest possible degree ® (I.J. Schoenberg, 1973).

dhat i
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It is infinitely often continuously differentia.ble, but suffers from localness.
It is also remarkable in that it is exactly the function which reproduces
an original 7- band-limited function sampled at a sampling rate equal

to 1. This is the essence of the sampling theorem. Therefore, using
(2.5-16) as interpolation function, corresponds to the assumption of an
originally band-limited function with highest frequency w= 7 (the

Nyquist frequency).

The cubic spline, however, shows a somehow different behavior:
strictly speaking, its spectrum is not band-limited, buc the Fourier
transform of the fundamental cardinal cubic spline
SﬁL;

o) (2.5-17)
Zz

2 — |
2 tcos w
is such that it practically amihilates all frequencies above w= 2T .
This factor is of interest because it varies with the degree of the
spline. In the case of a step function, which is the spline of lowest

degree --0, this dampening factor degenerates to

sin-‘i-u
2
So(w) -

; (2.5-18)

vlE

in the case of the function (2.5-16), which is the spline of highest
degree -- ®, this factor degenerates to a window
1 for |w| s =
Se(w) = (2.5-19)
0 otherwire
In between these two extrema there is the large family of splines of all
possible degrees. A graph of the factor (2.5-17), which is at the
same time the Fourier transform of the fundamental cardinal cubic

spline, is shown in Fig. 2.6.
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.80 = /, 3 (cublc spline)
1 (plecewise linear function)
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Fig. 2.6 Fourier transforms of a fundamental cardinal cubic spline

The graph shows clearly that the lower frequencies w S 7 of
the cubic spline are dampened relative to the window (2.5-19) of the
spline of infinite degree expressed by (2.5-16). This dampening in

the lower frequencies w =7 is exactly compensated in the higher
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frequencies w > 7 . The reason for this is that the integral of the
Fourier transform of the cardinal spline (and all other splines as

proven in (H. Sunkel, 1980) )is equal to T,
® sin 2
’ 3 2 \4 -
2+cos w ( w JPdw =

(-3
oo

Consequently, the amount of dampening in the low frequencies w 7

is equal to the build-up of frequencies for w=> T :

. L . W
@ sm— ® sin —
re, 3 2 3 2\
Jil' - ( W )] dw = J 2+cosw( w ! dw.
0 2+ cosw 3 1T 3

Summarizing we can say, that the frequency dampening of a spline
of arbitrary degree in the frequency range |w| S T is exactly com-
pensated in the range ( 7,%) , relative to the window (2.5-19). The
higher the degree of the spline, the better is the approximation to this
window, Therefore, the dampening of the lower frequencies and the
build-up of higher frequencies must be caused by the limited degree
of continuous differentiability of the spline (a kind of Gibb's phenomenon).
For this reason we conclude that the frequencies w> 7 are not
reliable anymore -- it is more or less frequency noise which is only
present in order to compensate the deficiency in the range w= 7 .

To understand this is essential in order to get a better idea of

how reliable differentiated splines are.

4

2.5.1.1 Spectrum of the differentiated cufbic spline. The

module GSPP is also capable of providing derivates of profiles and
surfaces up to and including second order. In order to better under-
stand the reliability of the output, which is a differentiated cubic
(bicubic) spline, it is essential to investigate the impact of a differentia-

tion on the spline in the frequency domain.

N
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This time we go the short way and make use of the fact that the
cardinal cubic spline is the result of a convolution of a fundamental

cardinal cubic spline with an impulse comb of data (the sequence

e 1),
f(x) = S(x) * Z.an § (x-m) . (2.5-20)

The differentiated cardinal cubic spline is likewise given by

f'y(x) = S'(x) - Z:Ofmﬁ (x-m) (2.5-21)

The corresponding equivalent in the frequency domain is a product of
the Fourier transform of S'(x) with the Fourier transform of the

impulse comb; the latter is given by equation (2.5-13),

FE(w) = Zf e'iwm

o M

From (2.5-12) we know the Fourier transform of S(x) to be

S(w)

Zd+tcosw - W
2

and therefore, S(x) can be obtained from the inverse Fourier transform,

S(x) = 2—;— IS(w)eiwx dw

S'(x) as derivative of S(x) with respect to x is then given by

[-
Si(x) = 21? fs(w)w e % qw , (2.5-22)

®

and its Fourier transform is simply

PTreT o

"

Lt
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3 i iwx ~iwx
S( )(55) = 5T J‘ Swwe e dwdx ;
_®

8 &—s

since we know from equation (2.5-15) that

Ieii(""“’)" dx = 27 *+ 6 (w-&) ,

s(’)(w) = iwsS(w) . (2.5-23)

And finally, the Fourier transform of the differentiated cardinal cubic

spline is

F ) = iw ( ) £ e . (2.5-24)

2+ cos w

We recognize the well-known fact that a differentiation dampens the

lower (g < 1) and amplifies the higher (w> 1) frequencies. For
comparison purposes we also give the Fourier transform of the highest
possible degree (®) cardinal spline,

iw % f e m for |w ST

(1) - m
Fo (@ = 0 for jw| >m7

The graphs in Fig. 2.7 give a comparison of both transforms for first

and . ccond order derivatives. Notice the shift of the frequency sensitivity

P
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Fig. 2.7 Fourier transforms of spline derivatives
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maximium towards w=7T with increasing number of differentiations.
What are the consequences of this? Since the fisguency resolution
becomes worse for higher frequencies, the reliability of spline
differentiation decreases with each differentiation and the frequency
noise represented by the frequency part w > T gains more influence

on the result of the differentiation.

2.5.2 Spectrum of the bicubic spline. Recalling the defining

equation {2.4-13) of the bicubic spline

~1s
~is

f _S(x-m) S(y-n) , (2.5-25)

f(x,y) = mn

8
8

with {fmn} the infinite data array and S(x) the fundamental cardinal
cubic spline, it is obvious that the bicubic spline is a tensor product
of cubic splines inx and y. Therefore it is pretty easy to find the two-

dimensional Fourier transform

T -flwgx +w
F(wx'wy)= f Jf(x,y)e (W YY) dxdy . (2.5-26)

Since (2.5-25) is a two-dimensional convolution of a two-dimensional

impulse comb with a two-dimensional fundamental cardinal cubic spline

f(x,y) = S(x) S(y) » * Z L fmn 6 (x-m) 6(y-n), (2.5-27)

the corresponding Fourier transform F(w < @ Y) is, according to the
convolution theorem, simply a product of the Fourier transform of the
2-D fundamental cardinal cubic spline and the Fourier transform of
the 2-D impulse comb.

To find the first is easy, it is just a product of two one-

dimensicnal transforms,

y W = S{w s
S (u.)X Y) St ) S(wy)

e i et e e i
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W
9 sin-@—x'sin—z-y s 3
Sw ,w )= ( ; 2.5-28 !
( X y) (2+cos wy) (2 + cos wY) \ ff wl ) ( )
2 2
the latter is simply the 2-D analogue to (2.5-13),
2 =
- -i(wym + wyn)
Fz(wx, Q)Y) -%‘ .Z' fme . (2. 5"29)

And finally, with (2.5-27), the 2-D Fourier transformation of the

cardinal bicubic spline is given by

Y%y
Slan . = 9 : sin>— ¢+ sin 2= )4
Ty (2 + coswy)(2+ cos wy) wWx Wy )
2 2

e-(w x + wyn)

s

f

. (2.5-30)

8 [~18

8

Expressed in terms of the bicubic spline coefficients, the above equation

has the form which is analogous to (2.5-5) of

3L L L
S(Wy, Wy) = m,n) et Wym + wy.n) .
= m=-® n=-® k=0 1=0 il
k-r =
k (iwg) ;
ki 11 -iw !
- 1- XZ (k-ry t |
(10, (i) r=0 |
1 (iwy) 1-s
| iy X __
l s=0 (1-s) *

(2.5-31)
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An equivalent expression can also be found in (Bhattacharyya, 1969).
All that has been stated so far for the one-dimensioral spline carries
over to the {wo-dimensional one:

There exists a highest possible degree ( «, %) 2-D cardinal spline,
which is fully analogous to (2.5-16), with the form

~1s

(2.5-32)

£z, y) = Z ¢ sin T (x-m) , sin 7 (y-n) .

mn T (x-m) T (y-n)

8

This function is infinitely often differentiable, but suffers from localne-s
if compared with the bicubic spline. It is the interpolating function
which reproduces a band-limited function with highest frequencies

We =T, Wy =T at a sampling rate equal to 1. Therefore, using

X
(2.5-32) as interpolation function, corresponds to the assumption of an
originally hand-limited function; if this was not the case (as usual in
almost all practical applications), the interpolating function suffers from
aliasing effects.

The bicubic spline's spectrum is, strictly speaking, not band-
limited, but the 2-D Fourier transform of the fundamental cardinal
bicubic spline (2.5-28)anniliates practically all frequencies above
Ly = 2T, Wy * 2", The frequencies above w = T, however, are
caused by the discontinunity of the splines third derivative. It is a
kind of Gibb's phenomenon; therefore, these higher frequencies represent
more or less only "discontinuity noise", which is exactly compensated
in the frequency range |w| = 7. This compensation causes the lower

frequencies tn be dampened (compare Fig. 2.7 ).

2.6 Practical 1-D and 2-D spline routines

2.6.,1 The cubic spline routine. In chapters 2.4 and 2.5 a

somewhat artificial case has been discussed: splines based on an
infin te number of data, uniformly distributed on 3 grid with constant

grid distance equal to 1. The discussion has been performed for this
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exotic case because it is considerably simpler to point out the essential
features; also the finite spline behaves likewise because of its localness.
For applications, howevar, it is necessary to deal with the general
case.

Detailed derivations can be found in a standard text on splines
like (Ahlbez:g et al., 1967). Here, only the very necessary things will
be presented.

Let there be given a sequence of abscissas {xm] , m=1,
eeey My f.0= f(xm). An interpolating cubic spline is a twice continuously
differentiable function over the range [a, b] which consists of (M-1) cubic

polynomials, each of them defined on an interval [xj, x;.,],

™)y = g. 2 e : (2.6-1)
=0

. m
The coefficients {a1(< )} ,» m=l . . ., M-]l, can be found via the continuity

conditions for first or second order derivatives. This leads to a system

of M linear equations
Afn = Bf (2.6-2a)

Ais a strongly diagonally dominant tridiagonal symmetric matrix with

ositive diagonal elements; it follows from well known theorems in
matrix algebra, that A is positive definite. The uniqueness of the spline
is guaranteed if, in addition to the function values, the second derivatives

are given at the end points a and b of the interval [a,b]. Since such

kind of boundary informations are hardly ever available, the most
natural choice is to assume them to be zero. This corresponds to a
linear behavior of the spline at the end points a and b of the interval.
The corresponding cubic spline is referred to as a '"matural spline'.
GSPP assumes vanishing 2nd derivatives at the boundary points, and

therefore, calculates exclusively natural cubic splines.
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The solution of (2.6-2)
fr = A-'Bf, (2.6-2b)
can be found very efficiently by a Gauss-Jordan elimination procedure
(Spath, 1973; p. 10 ff.). If the system has been solved, it is fairly A ; §
easy to find the coefficients {al((m)}, k=0, ¢e., 3; m=1, ..., M-1: ’ ;
j
a((,m) = 1 X
|
Af .
m m 1 |
aﬁ ) - BAx_ "6 Axm(fi;nﬂ ¥ Zflx"n) |
m ! ]
206'3 "3
a_gm) = .}.fu ( ) E
2 m ,
s g )
6 Ax mt+1 m ,
m
b
: { , with Axm: = X4y -, 2nd Afm: =f i, ‘
' ]
I
b In a similar way (2.6-2a,b) and (2.6-3) can be expressed in
.
b terms of 1lst derivatives, which will be used in the calculation of
i { bicubic spline coefficients.
|y
o | 2.6.2 The bicubic spline routine. Let a regular rectangulur
» grid consist of M- N gridpoints and let the function values at the grid
'! points be {fmn']’ m=1, ..., M; n=]l, ..., N. Then a bicubic spline
, consists of (M-1)(N-1) bicubic polynomials in x and y
g
Cd 3
I
Ef f( xy)“z 2.: ki xx)(yy) (2.6-4) .
; | k=0 1=0 3
l.: 3
!
with coefficients {al(\l )} expressed by the product ‘: ;
(m,n) _ ¢ (m,n)y_ T |
. A = {2 }=H (hx)FH(hy) (2.6-5a) ’
3 i"
ﬁ |
4 i ;
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and the grid spacing matrices H(hx) and H(h ),
-

1 0 -3/n® 2/h
0 1 -2/h 1/h*

Hh) = 1y o a3 -2/b3 ! ’ (2.6-5b)
0 0 -1/h  1/h* |

—— —

where h grid distance in x-direction
x

h

y grid distance in y-direction .

F is a2 matrix with data information

fmn qmn fm, n+s qm, n+i
pmn rrnn pm, n+i rm, n+4
F = . ) (2.6-5¢)
X q £ q
m+y, n m+g,n  mty, nt m-+i1, nt
prn-i-;, n rm~}-1,n Py ,nt rm+1, n+i
where
f, = function value at the gridpoint (m,n)
Py - first x-derivative at the gridpoint (m, n)
q., = first y-derivative at the gridpoint (m,n)
Lo second xy-derivative at the gridpoint (m,n).

The derivatives {pan ) [qmn) , and {rmn3 at all gridpoints are

determined by continuity conditions of second order derivatives similar
to the one-dimensional case. A unique bicubic spline representation,
however requires, apart from all function values {frnn} at the grid
points, the following additional boundary informations:

{Pl,n] ’ {pM n} ’ n=1, eeey N;
' (2.6-54)

{qm,’3 ) {qm’N}: m=1, ..., M;

(“
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{rmn] , m=1, M; n=1, N,

Since these boundary informations (derivatives) are hardly ever
available in practical applications, similarly as in the one-dimensional
case, assumptions have to be made concerning their values. The most .
natural assumption is to assume vanishing second order derivatives along
the boundary normal. This is an implicite assumption relative to the
boundary data (2.6-5d). The practical determination of the coefficients

runs then as follows:

1.) Solve the spline equations (2.6-2) for first order deriva-
tives as unknowns with data vectors {fmn)’ m=1l,..., M
and vanishing 2nd derivatives at the boundary points,

2
DZ£(x, y, )

__ =D2f(x, y )| =0 , for all "columns"
X=Xy X

n X=XM
n=1, ..., N obtaining so all 1., derivatives in x-direction

{Pmn), m':l, o6 0y M; n=1, o v ey No

2.) Interchange the role of x and y: Solve the spline equations
(2.6-2) for first order derivatives as unknowns with data
vectors {fmn}’ n=1, ..., N and vanishing 2 nd derivatives

0,

at the boundary points, D2f(x , __ =D*(x _ =
VP y Y”v-v; gt m.v)‘v-YN

for all "rows" m=1, ..., M obtaining so all first derivatives

in y-direction {qmn)’ m=1l, «.., M; n=l, ..., N.

3.) Replace "“f" by "q" and solve according point (1) or, which
is equivalent, replace "f" by "r" and solve according point
(2) The result is all second order mixed derivatives

{1‘ } N m‘:l, ce ey M; n=l, ooy N.
mn

With these values obtained, the bicubic spline is completely defined.

(m,n)
kl

m=1, ..., M; n=1l, ..., N and on the grid spacing hﬂ{ and hy')

, q r_ 1,

(The coefficients {a ) depend only on {f mn’ Fmn

mn’ Pmn

|
|
!
!
i
}
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i
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o
Ry

g

Therefore, it is necessary to have this set of defining values, the

quadrupel (£f,p,q, r)mn at each grid point, available in order to define

* a spline uniquely. Generally speaking, also the grid distances hx and

<y

h can change with m, h =h (m), h c¢an change with n, h =h .
. v g ” x() v g v Y(n)

However, GSPP always assumes hx and h_to be constant (they need
not necessarily be equal). This simplifies computations quite consider-
ably: the grid information matrices become constant; therefore, it is

possible to perform all calculation normalized, with a constant grid

spacing in x and y-direction equal to l. Of course, the calculated

derivatives have to be interpreted accordingly -- they refer to grid

spacing equal to 1 and have to be scaled by hx and hY later on in order
to obtain real values. The gain is two-fold: firstly, all derivative
calculations (solutions of the spline equations) are highly stabilized, and

secondly, the calculation of the product (2.6-5a) -- which, in GSPP, is

not formulated in terms of two matrix products but is programmed
explicitly -- gains in calculation speed because a number of divisions

{or multiplications)is aveided . This sounds trivial but is very essential

when the grid is extended and if a huge number of interpolations has

to be performed.

2.6.3 Interpolation/differentiation of splines. Interpolation

with cubic and bicubic splines is really trivial as soon as the defining
values are available -- function values and lst, or 2nd order deriva-

tives at the knots {xm}, m=1l, ..., M in the one-dimensional case,

1 and the quadruple {f,p,q,r}mn, m=1l, +¢., M; n=1, ..., N in the

two-dimensional case. Thercfore, an interpolation of a function value

Xhnwarsn

at a point x (x,y) requires the following steps to be performed:
. 1) find the intervali number m (grid element numbers m,n)to which

; the point x (x, y) belongs;

2) calculate the cubic spline coefficients using {2.6-3) (bicubic

spline coefficients using (2.6-5);
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3) perform the product (2.6-1), for the cubic, (2.6-4) fcr

the bicubic spline.

Computation efficiency can be gained by performing the products
(2.6-1) and (2.6-4) not blindly, but by reducing the number of operations

involved to a minimum like
£(x) = ag+ X (3, +X (a, +X2ay)), x = x-x_ (2.6-6a)
for the cubic spline, and
f(x) = agp + 7 (an + T (a2 + 7 203) )
tx (a0 + Y (ay + 7 (2 + ¥ ag)))

(2.6-7a)
+ % (a0 + ¥ (a2 + 7 (22 + 7 23)))

+X (a3 + V(agy +7 (2 +F ag))))» X = X=X ¥ = Y=Y,

for the bicubic spline. (This arrangement reduces the number of multi-
plications from originally at least 28 to 15 and keeps the number of
additions constant.) If the coefficients refer to grid spacing 1 (normal-

ized coefficients), then X =(x-xm)/hx and y = (y-yn)/hy .

Any derivaiive 05 & < 3 of the cubic spline (2.6-1) can be

expressed by

” i k k-a <
' = T s 3. -
Dxf(x) altl a (a) % , 05as 3; (2.6-8)

k=
however, it is more efficient to explicitly write down the derivatives:
f'(x) = a; + x (23, +%.3a,),
f(x) = 23, + 6a,%, (2.6-6D)
fm(x) = 6a,

Similarly, any derivative 05 ay S 3, 0= @, = 3 of the bicubic spline

(2.6-4) can be expressed by

Iy
!
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o alalf(x i i ®,,1 k-ay 1-&
‘ D%(x, y) = 2SE¥) - o1 0 a QG v 7
ox ’ay 2 k=g 1=@, 12
. (2 . 6 -9 )

. N

with the double-index a: = (@, m), |@| =y + &, 0 S 0y, @, S 3,
This compressed expression, however, is far from optimal as far as
CPU-time saving is concerned. Therefore, all partial derivatives should

rather be used in the following forms (see also (Siinkel, 1980) ):

fx(x:Y) ap + ¥y (ay + 7 (ap + ¥ a3 )) (2.6-7b)

T x (2(a + V(g + ¥ (202 + T ay3)))

t X3 (a5 + yY(ayy + 7 (ag + Tay,)))),

fY(X:Y) = agy t X (agy + X (a5 + X ayy))
+y(2ay +X(ap + X (2, + x ay)))
+ 73 (a5 + X (a3 +X (a3 + X a)))),
fxx(x’ Y) = 2(a +y(ay + ¥ (ay + ¥ ap))
+ x3(ag +y (a3 + y(pp t y as3)))),
fxy(x» y) = ay +y (2ap + ye 3ay3)

+ x (2(ay + y (23, + ¥+ 3ay))

+ x+3(ayy + y (22y, + -)—’ 3ag))) .

fyy(x’ y) = 2(ag + x (ag + x (22 + x az )

+ y+3(ag + x (ags + ;(aza +x as;3)))),

fm(x, y) =6(a3 T y (a3 + v (ag + y a5))),

A
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= +y +ye

fxxy(x' y) 2(ay; + y Raz + v+ 3ay;)

+x *3(ay + ; (225, + -3;‘33'33)))’
fxyy(x, y) = 2(ap + x (23, + x:3ay)

+ -};-'3 (agg *+ x (2a,; + X 3a33))),
£ (x, = 6{ag; +x (agy + % (2,, + X2 ,
yYY Y) 03 ( 13 ( 23 33 )))
me(X, y) = 6(agg ty (2a;;, + y°3ay)),
fxxyy(x» y) = 4(ap + ye3a; + x°3 (a; + ye3ay)),
£ x,y) = 6(a; +x (2a,5 + x*32ay)) ,
XYYY( Y) 3 ( 23 33))
fxxxyy( y¥) = 12 (ag + y*3ay),
£ x,v) = 12 (a,; + x*3a,3),
xxyyy( Y) (23 33)
fxxxyyy(x’ y) = 36 as .

GSPP is capable of providing plots of derivatives 0= @ , & S 2.

2.7 Contour finding

Let the prediction of function values at a regular rectangular
grid be done and assume that the spline routines have generated the
quadruple {f,p,q,r}mn, m=1, ..., M; n=1, ..., N of bicubic spline
defining values. In other words, let a bicubic spline surface be

given such that on each grid element Rmn‘[xm' X ad Yy Yn-h] the

smooth interpolation function given by (2.6-4). The goal is to find
the contour f(x,y) = constant = c.

Consider just one single grid element Rmn with the bicubic poly-
nomial (2.6-4) as interpolating element. Then it is obvious that at
least one contour exists if the condition

min f(x,y) < ¢ < max f(x,y)

(YR (V)R

is fulfilled. In the case of one-sided equality the contour degenerates

s v oo W £ rlbmrannt. Rt o
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to a point, in the case cf two-sided equality the bicubic element is
flat and horizontal, all coefficients {ald} , k,1 =0, ..., 3 are zero
apart from a, (which, naturally, can also vanish), and no contour
exists.

The decision process of existence or non-existence of a contour
(or more contours) is only the beginning of the long procedure of actually
finding them. Remember that we have to find the solution(s) of the

equation

3
RN
flx,y) = ayX y = c= const., (2.7-1)
k=0 1=0

a slightly simplified form of (2.6-4). In one dimension this corresponds
to the solution of

f(x) = ay + agx + ax® + ax® = ¢,

which is nothing else but finding the zeros ( = 3) of
(ag-c) + ax + a,x* + a,x® = 0 (2.7-2)

with almost arbitrary coefficients. Even in such a simple case, a
simple solution usually does not exist. The approximation methods
used for the solution of above cubic equation essentially consist of
finding the intersection of the horizontal line fy(x) = ¢ and a line
segment of (2.7-2) which represents the behavior of this cubic poly-
nomial in the neighborhood of the zero being considered. In other words,
the zeros can be found by approximating the cubic polynomial (2.7-2) by
a continuous and piecewise linear function, and intersecting this approxi-
mation function with the line fy(x) = c. It is obvious that each line seg-
ment of the piecewise linear function has either 1 intersection or none
(Fig. 2.7.1)

In view of these facts it should be clear that direct contour-
finding with the bicubic function (2.7-1) is hopeless. There is, however,

a way to overcome this problem, similar to that discussed above:

oM N 5 e s a8 s

P

DU NO SIS ¥ | §




ST

-

7 T = S e
& - s - 4
S . e g e PANAN-S I T T W e
PRl il
MW' s L L RTETTT el

-56 -

£ (x)

fl(X)

Fig. 2.7.1 Intersection of f(x) with f, (x)

By approximating the bicubic function (2.7-1) by a number of simple
elements which allow for a simple contour-finding.

The simplest such approximation function is obviously a plane.
A plane either has 1 intersection with another (horizontal) plane or has
no intersection; moreover, the intersection is a straight line. A plane

is uniquely defined by 3 parameters which can be taken as the function

values at 3 not coinciding points. Therefore, one would conclude that

piecewise linear (flat) triangular elements are the obvious choice for the
approximation of any continuous two-dimensional function analogous to
the one-dimensional case.

A linear triangular element is defined by the equation

and, intersected with the horizontal plane

At
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f,x,y) = c,
gives an intersection
1
yix) ='b—z (c - by - begx) (2.7-4)

which is obviously the equation of a straight line. Since the element is
flat, only two boundary lines of the triangular element can have an
intersection with (2.7-4) or no boundary line has an intersection. To

find these intersections is indeed very simple: first it is necessary to
check if

min fi < ¢ < max f )

i=1,2,2 i=1,2,3
where fi , i=1,2,3 are the function values at the 3 corners of the
triangle; the second step consists in the actual calculation of the 2
intersection points. The straight line connecting these two intersection

points is part of a contour. The full contour is then the continuous

and piecewise linear line consisting of the above described line segments

(Fig. 2.7.2).

Fig. 2.7.2 Contours on piecewise linear triangular elements
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This is in principle the contour-finding procedure frequently
used in connection with detailed digital terrain models: sampled terrain
heights and other kinds of structure informations like rivers, lakes,
roads, dams, artificial structures are taken into account, a dense
"triangulation is generated", and the terrain heights at the corner points
of the triangles are either known or are predicted. It should be
pointed out that all this sounds very simple, but is extremely complicated.
The enormous problem consists primarily of analyzing how the human
intellect "produces" an image on the basis of data and secondly, to
"translate" this stream of logical operations in a programming language.

We are not going to discuss this method in detail because GSPP
has been designed for another possible method of contour finding.

Recall that the bicubic polynomial (2.7-1), as part of the bicubic
spline surface, is defined on a rectangle. Therefore it is quite natural
to approximate the surface not by flat triangular elements, but by simple
elements also defined on a rectangle. The simplest element defined on a
rectangle is a function with 4 parameters which can be determined from
the function values at the 4 corners of the rectangle. Such a function,

in general, is no plane anymore; it is a hyperbolic paraboloid (saddle

surface) with the equation
f(x,y) = by + bgx + by + byxy (2.7-5a)

this function is bilinear, which can be seen more easily in the equivalent

form

£(x,y) = (co + cyx)(dy + dyy) (2.7-5b)
with cdy = b

cydy = Dy,

Cody = by,

cydy = by,

or in the form

o S — T T T ~ T R T o
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.
k
fxy) = L L bx y (2.7-5¢)
) k=0 1=0
with
boo = by,
by, = by,
bo‘ = bz,

S - N

Bilinear means that the function is linear along the coordinate lines
x = const. and along the coordinate lines y = const. In any other
direction the function, in general, not linear (Fig. 2.7.3).

This bilinear eiement plays a central role in contouring based
on rectangles and a thorough discussion is essential for an understand-
ing of the whole contouring logics. We will, therefore, investigate its
properties in detail.

Let us first introduce a new coordinate system (x',y') parallel
to the old system (x,y) with origin coordinates (x, 7y,)in order to

eliminate the linear terms in (2.7-5a),
x = x'+3%, Y=Y ty- (2.7-6)

Then the intersection between the bilinear element (2.7-5a) and a hori-

zontal plane fy(x,y) = ¢ = constant assumes the form

c by + by(x' + x4) + by(y' + yo) +ibs(x! + xp)(y' + yyo)

(by + byxy + by, + baxgys) + (by + byyy)x!
+ (b, + bxo)yt + byx'y' ; (2.7-7)

the linear terms (x', y') vanish if by + by, = 0 and b, + byx, = 0;
these conditions provide the coordinates of the origin of the new

coordinate system (x', v')

b b
X = Yot (2.7-8)

- e et e 4
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Figure 2.7.3 : A bilinear element

With these values equation (2.7-7) takes on the simple form

1 bsb
Iyl = ——— - —L...Zs
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Since the right hand side of the equality sign is constant, the line of
intersection has the equation x'y' = constant. But this is exactly the
equation of a hyperbola with asymptotic lines parallel to the coordinate
lines (because x' = const./y' and y' = const. /x'). Therefore, we know
also the axes of the hyperbola: they are mutually orthogonal and span
an angle of 45° with the coordinate lines. In order to prove this we

introduce a new coordinate system (;,;r-) rotated by an angle « :

cos @ -;; sin @

Xl K1

sin @ +y cos & . (2.7-10)

With this coordinate transformation, the product x'y' assumes the form
x'yt = (%2 -§2)cos@ sin@ + xy(cos’@- sin®@)
(

The above equation becomes purely quadratic if cos 2 @ = 0 which corres-

2

-y? )‘21‘ sin2a + ;; cos2@ = const.

14 . . .
ponas to ¢ =3 Pproving the statement made above. So we finally obtain
the equation of the contour

xR -3 = bi(c-b”l’ﬂ—’L). (2.7-11)
3 b3

This purely quadratic expression is the mid-point equation of a hyperbola.
It refers to a coordinate system (Q,;) which is shifted relative to the
original system (x,y) by (%4, yo) having values (2.7-8), and rotated by an
angle of 45°. The axes of the hyperbola coincide with the new coordinate
axis (; = 0, —y- = 0) and span therefore the same angle of 45° with the
original system. The hyperbolas asy.aptotes are parallel to the

original coordinate lines (Fig. 2.7.4).

After having pointed out all relevant facts concerning the line of
intersection, we come back now to the bilinear element. The bilinear
element is linear along each coordinate line; therefore, it is also linear
along the 4 boundary lines of the rectangle. Each linear function can
be intersected at most once by another linear function, and, for the

same reason, can there be at most one contour intersection point cn

\
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X=Xq

(asymptote)

Y=yo (asymptote)

Figure 2.7.4 Contours of a bilinear element

each of the 4 boundary lines of the rectangle. Before we discuss this

maximum case we state that the other two possibilities are 2 intersection

points or no intersection at all. In the case of only two intersection

points it is clear that both points belong to one and the same hyperbola

(because the asymptotic lines are parallel to the original coordinate

o

lines), and the connection between the two points is clear. The way

of making the connection between intersection points is not so evident

(Schumaker, 1976, p. 249 ff). Is there a simple and unique answer to how
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the 4 intersection points in Fig. 2.7.5 have to be connected?

4
L 4
b

Figure 2.7.5: Bilinear elements -- contour/boundary

intersection points .

Yes, thereis a simple answer ( Stnkel, 1977a). The clue is
that the asymptotic lines of the hyperbolas are parallel to the coordinate
lines. Therefore, the position of 1 out of the 4 intersection points
relative to the origin (x,, y,) of the new coordinate system determines the
way of point connection uniquely: In Fig. 2.7.5 the point Py is
below the asymptotic line x = x,; therefore, it can only be connected
with P2 whose coordinate y is smaller than y, ; since the hyperbolas

N are symmetric relative to the origin, the connection of P; with Py is
automatically fixed. Consequently, the simple calculations of the origin
(2.7-8) provide sufficient information about the way of point connection

(Fig. 20706)0
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J

e}

5
Figure 2.7.6: Bilinear elements -- connection of contour/

boundary intersection points.

The coordinates of the hyperbolas origin are valuable also for
another reason: they tell if 4 intersection points are possible (2 hyper-
bolas) or if just 2 intersection points (1 hyperbola) exists within the
square; if the origin is located outside the square, then at most one
hyperbola exists, if it is located within the square, two hyperbolas are
possible.
the case of hyperbolas degenerating into the asymptotic lines; this
hapyens if the x-coordinates of one pair of points (and the y-coordinates
of the other pair of points) coincide -- such lines are known as raddle
lines (see Fig. 2.7.6).

All the considerations made above about the intersection curve(s)
and the way of intersection-point connection are simple but essential
for the logics of contour finding.

Let us go back to the coefficients {bk]' K =0, ¢ve," 3, in
equation (2.7-5a).

There is an exceptional case which should also be mentioned:

They can easily be determined as linear combinations
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cen e e e ey

of the function values at the 4 corners .. the square: o

by = fgo .
by = f55 - fp ( |

2.7-12
b, = f55 - fg )

by = (fyy - fg0) - (for - £00) ’

with fiq = f(x =k, y=1), Here it has been assumed that the square
on which the particular bilinear element is defined, has unit length. : l
This saves a number of calculations (divisions or multiplications) in |
GSPP.

Summarizing, the process of contour-finding for a bicubic spline

surface consists basically of the following steps:

1) Interpolate the bicubic spline at the grid points of a |

rectangular array which is a proper subdivision of

the original grid on which the spline has been defined
(Fig. 2.7.7) The function approximating the bicubic

o

spline is defined by the array of function values at these
subgrid points. The function is continuous and con-
sists of bilincar elements, each defined on one individual

subgrid element. Store this approximating function.

2) Start with the lowest possible contour value and search
for a ~ontour intersection point along the boundary

rectangle of the whole subgrid -- contours intersect-

ing the boundary are open (non-periodic) with respect

to the contouring arez in consideration. Having found

the first intersection points, there are two alternatives

to find the next one in this element: either by first
comparing the contour value with the other 4 remairing

contour values, singling out the possible line(s) and

calculating the coordinates of the intersection point(s),
ox to take advantage of the relation between the hyper-

3 bolas and their asymptotic lines. Since the origin coordinates
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R O Ty Tt

|
|

Figure 2.7.7: Grid (4x5) and subgrid (16x21)

S

are necessary anyway for the decision of how many hyperbolas

are possible and for the point connection, a hybrid solu-

tion has been chosen. This intersection point searching

continues like a domino from one element to the next

PRy

until the contour leaves one of the four boundaries.
A certain integer array associated with the array of
bilinear elements "remembers" the position of all inter-

section points relative to the boundary rectangle of a
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particular element, and "directs" the program part
which is responsible for the calculation of the contour inter-
section points, This is necessary in order to avoid a
multiple calculation (and plotting)of contours.
After all non-periodic contours (for a particular

contour value) have been found, the program searches
for periodic contours (contours which do not cross the
boundary).

3) Plotting of the contour., Repeat steps (2) and (3) until
the contour value exceeds the maximum function value of

the surface.

These are the basic steps which are necessary to find contours
fo a bicubic spline surface. However, there are and/or can be a
number of secondary procedures involved which make the steps (2) and
(3) rather complicated. In the sequel, three intermediate procedures

are described which GSPP is capable of performing.

2.8 Optional contour procedures

We start here with the most commonly used procedure, the
contour smoothing.

2.8.1 Gontour smoothing. Theoretically, a contour smoothing

would not be necessary if the hyperbolas of the last section (contours
of a bilinear element) could be sampled at a sufficiently high rate.
This, however, is relatively expensive in terms of CPU-time. There-
fore, it has been decided to take only 2 points of a single hyperbola
into account, its 2 intersection points with the boundary of the square on
which the bilinear element is defined. The actual (non-normalized)

size of the square (subgrid distance) is chosen as approximately 2mm
by GSPP and can be changed within certain bounds by the user. How-
ever, consecutive contour points will have a rnutual distance of up to
approximately v2 * subgrid distance (a~ 3.5 mm in this case). A

linear connection of these contour points might give a too rough picture.

T
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Therefore, it is either necessary to decrease the subgrid distance
or to smooth the contours. GSPP will always smooth the contours
unless the smoothing is suppressed by the user. The interpolation
function used for the smooth representation of the contours is a
partitioned and overlapping cubic parameter spline.

A cubic parameter spline is a cubic spline whose coordinates
x and y depend on a parameter which is here taken to be an approxi-

mation of the arc lengths of the contour,

x(s)
y(s).

X

y

Therefore, bothx = x(s) and y = y(s) are cubic splines depending on the
parameter s. In GSPP, the arc length is taken as the accumulated
length of the piecewise linear function determined by the originally
calculated contour points.

The number of points for a single contour may become quite
large (a couple of hundred); moreover, the points are by no means
equally spaced. These circumstances can cause instabilities in the
spline algorithms. In order to avoid this it has been decided to first
*clean-up" the crude vector of contour points which is to be understood
as an elimination of all contour points whose mutual distance is
smaller than some percentage of the subgrid distance (assumed to be
25% but can be changed by the user within some bounds). After this
clean-up procéss, the vector of contour points is subdivided into a
number of overlapping vectors (GSPP: 25 points/vector, 6 points overlapping).
The overlapping has been chosen in order to preserve the smooth transi-
tion from one part of the contour to the next part to such a degree that
it is not possible to detect the transition by visual means; a 6-point .
overlapping fulfills this requirement; the number 25 has been chosen
for reasons of stability.

After the calculation of the spline parameters, further contour

points are interpolated such that the overall mutual distance of the

A

|
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contour points varies only between narrow bounds. Fig. 2.8.1 gives a

comparison between smoothed and non-smoothed contours.
i

Figure 2.8.1 Smoothed and
non- smoothed
contours

Mt b o R s

I

. ARy L <F




-70-

2.8.2 Contour mapping. Usually, the two-dimensional coordin-

ates x and y are interpreted as cartesian coordinates and the mapping

"data space — image space" (contour plot) is assumed to be given by

x*’-‘-c’x .-

(2.8-1) P

H
i

y

where (x,y) are the coordinates of a data point, (x* ,y*) are the

coordinates of the plotted point, and ¢ is the constant scale factor. i
However, especially in all earth sciences the coordinates are '

not to be understood as cartesian coordinates but as, e.g., spherical

coordinates ¢, A, and there is the wish or need to choose a mapping

different from that in equation (2.8-1). For example, a Mercator

projection

¢y In [tan (E + lel e sign (?)

»
x 4 2

vt = e (A-Xdy)

g

with
P,A = spherical coordinates (latitude, longitude),
Ao = longitude origin {
cy, ¢; = scale factors in x and y- direction;

Another example, a linear transformation of the form

x* = ¢y (xcosa + y sin Q)

y* = ¢, (-x sina + y cos @)

with the constant azimuth & as rotation angle. Obviously, there is an

unlimited variety of possibilities for coordinate transformations -
(mappings). If any mapping different from (2.8-1) is desired, the
user has to define this mapping by providing the corresponding sub-
routine and he has to inform GSPP that a mapping is requested. This
mapping has, naturally, to be done for all points of the contour;
actually, it is performed after the clean-up of the contour point

vector. Fig. 2.8.2 shows a Mercator projection of the contours in ‘

Fig. 2080 1.

- R e e e e o - - - — - -
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Fig. 2.8.2 Mercator projection of the contours shown in Fig. 2.8.1 \ .l
2.8.3 Contour labeling. By labeling of contours we under-
stand the plot of the contour value into an interval which is kept

free of the contour line., The contour has to have a sufficient length
such that a contour value fits in an interval which is smaller than |
the actual length of the contour. If a contour is too short, no label

(contour value) will appear. The directiorn of the label is designed to

it

be identical with the tangent to the contour at the midpoint of the label.
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The length of the label depends on the actual contour value, the
number of decimal places to be plotted, and the sign of the contour
value, according to the equation

n+2+u(-x) for |x| < 10.0
w = cehe (2.8-2)
n+2 + int(logye(|x|)) + u(-x) for |x|> 10.0

with = label length’

h = symbol height,

¢ = ratiosymbol length/symbol heizht

x = contour value,

n = number of decimal places to appear,
int = integer function

u(x) = unit step function, u(x) = 1 for x>0

0for xS0

If not defined explicitly by the user, the number of decimal
places is chasen such that at least 3 significant digits appear. I
the absolute contour value is greater than or equal to 1000, no decimal
digit and no decimal point will appear. If the contour value is zero,
only a "0" without decimal point and decimal digit will be plotted (see
Fig. 2.8.1).

Moreover, labeled contours can be plotted with multiple line-
width (if the plotter is designed for such a purpose).

The labeled contour interval has to be an integer multiple of the
non-labeled contour interval ; the default value in GSPP is each
second contour labeled with double linewidth.

2.8.4 Contours within a window. Usually, the complete bicubic

spline surface from m=1, ..., M and n=l, ..., N will be contoured.
Sometimes, however, one is probably interested in only a part of it
in order to see more details when plotted in a larger scale or one
likes to have more contours than usual plotted in a particular area.

For such purposes GSPP offers the possibility to plot only a rectangular
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part of the whole surface, say the window m =m,, ..., my; and
N =Ny eee, Ny Figs. 2.8.3 give an example of such a window

plot.

N

N

\

N
NN

Figure 2.8. 3: Contours within a grid window .
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This feature, however, is limited in many respects: it allows
only rectangular windows on full grid elements (from one grid point to
anothe. grid po.t). Furthermore, it is not possible to suppress the
contour drawing within a rectangular region. In order to overcome

all these deficiencies, a highly sophisticated routine has been developed

and incorporated into GSPP; it will be described in the following section,

2.8.5 Contour-free regions of arbitrary shape. Sometimes

there is the desire to plot the contours only within a predefined closed
region, or vice versa, to suppress the contour drawing within certain
regions., For example, it might be requested to plot a gravity anomaly
«1ap only for the state of Ohio or,a rather recent application,

to generate a world geoid solely based on altimeter data and to plot
this geoid only over the oceans and greater lakes because of the lack of
data over the continents (e.g., Rapp, 1979). Before we describe
the procedure which is capable of doing this, let us mention that such a
statement is very simple to make -- its transls'‘on into a computer
language, however, is extraordinarily complicates The reason is
primarily that such a region is, in general, not conve. nractically
arbitrary in shape, and last but by no means least, may consist of a
very huge number of boundary puvints. In order to give an idea: the
detailed world shore-outline data bank consists of some 80 000 points.
Moreover, there mnight be contour-regions within contour-free regions,
and so on -- this could be the case in the above mentioned altimeter
example: geoid plnt only over !'water!': ocean (continent (lake

(island (luke (isiar., .)))). More technically, the procedure should

be able to hanul sequeaces of subsets
AOD A,D‘,‘XZDQQC DAn (2-8"3)

such that contours are drawn only on

B,
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or only on its complement

Azk_'l - Aak 3 k = 1, 2, LU Y (208"4b)

n
2
(see Fig., 2.8.4 ), Sometimes it is even required that the contours
are drawn (or suppressed) on a union of mutually exclusive (disjoint)
sequences of subsets. In this case Ar and n depend on a parameter i
(see Fig. 2.8.4):

AE:DAZD...DA:L , 1i=1, ..., L (2.8-5)

i

GSPP is capable of handling e\.ren this case.

Honestly speaking, the author himself had absolutely no reasonable
idea how to start when he got involved in this problem. It is clear that,
in order to plot contours only in certain regions, it is necessary to
a) find the intersection between the contours, and b)to know which
part of the contour has to be plotted and which one has to be deleted.

In order to find the intersections between a contour and all region
boundaries it is necessary to develop a stable algoritam which is capable
of finding the intersection between two straight lines, and to run this
algorithm for all possible line segments of the contour and all poa:sible
line segments of the boundaries. If the number of boundary points is
very small, this procedure will not be very expensive; however, if the
boundaries consist of 100 points and more, this method becomes
absolutely prohibitive in terms of computer time. How else should

one attack this problem? Since in nature almost everything is

optimized (very probably because of the long time of evolution), it came
to the author!s mind to analyze the almost automatic human decision
process for the particular problem of suppressing the drawing of contours
within predefined regions, and to "translate" this process step by step

in the computer language FORTRAN IV. The analyzation of the decision

process was relatively simple, not so the translation into FCRTRAN IV.

e e ——— e e e am
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Let us first analyze the process of contour suppressing in terms
of human action, the interplay between the memory (brain memory),
the optical sensor (eye), and the mechanical part of the pen movement
(drawing by hand): First of all we obtain from an external unmit
(somebody) the surface information, generally in terms of function values
at grid points, together with the boundary outlines and the information in
which region the contours should be drawn (or in which region they should
be deleted). This corresponds to the information represented in Fig. 2.8.4

(+ surface information).

Figure 2.8.4  Boundary outlines
+ ... contour region

- ... contour-free region
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The first step consists of a global ''look!' at the situation

in order to get an impression of where contours have to

be drawn. If no other means is available, the test-person
will assign a ""YES'' to all contour regions, a ''NO'' or
just nothing to all contour-free regions, and a '"'?'' to the
boundary zone which is neither YES nor NO, and !''store'
this YES-?-NO pattern in his brain. Now we have the
following information available: the array of function

values at the grid points ( & the surface), the rough pattern
of YES-?-NO entries, and the exact boundary outlines.

The next step is the decision where we should start search-
ing for contours. The YES-?-NO pattern is the guideline
for this decision, Obviously, one does not start amidst a
NO- group in order to find out, after the calculation of the
contour line element, that it was useless anyway because of
its location within the contour-free region., The test-person
would probably also not start to calculate and draw contours
amidst a YES- group -- this would speak against a systematic
solution of the problem. It would start rowwise {or column-
wise) with a ''?'' element, an element from a boundary zone.
In other words, the test-person starts to calculate contours
in a "zone'" along the boundaries.

He calculates the line element of the contour and has now

to intersect this line element with the boundary (or the
boundaries). For this purpose he needs to have the
'accurate!' information about the boundary (boundaries) in
this small region. He does not need to know the whole
boundary information, but only a ''close-up'' of a very
limited part.

He moves his eyes closer to this part, concentrates on only

two lines, the contour segment and the small part of the

-
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boundary, and forgets for some time all other regional and
global information. He finds the intersection; now he has

to decide on the pen position, up or down. Since he "forgot"
in the meantime all global information, he recalls them

again by moving his eyes away from the picture in order to
get again the global impression of the YES-?-NO pattern.
This pattern, in turn, enables him to choose the correct

pen position, and secondly, to make him trace the contour

in the correct direction (the direction of pen down).

He lowers the pen at the point of intersection, calculates the
next contour element; if this happens to be in the "?" region
he repeats steps (3) and (4); if it falls in the YES - region
he continues drawing until he finds the next "?" region,

The first pen-up/pen-down decision is sufficient for all further
ones because of the alternating character of the contour/

contour-free region sequence.

These 5 steps described above are in principle "translated" into

FORTRAN IV. In the sequel we present the essence of this translation.

1)

As described in Chapter (2.7), an integer # 2 array is
assigned to the array of bilinear elements. The same
array is used for storing the information whether a particular
element (here rectangle on which a bilinear function is defined)
happens to be located completely inside a contour region (YES),
completely inside a contour-free region (NO), or if the element
is crossed by one of the region boundaries.

The boundary information consists of the number of
boundaries, the information whether boundary i encloses
a contour - or contour free region (for all boundaries i),
the boundary coordinates and information if the boundary

coordinate sequerce runs clockwise or counter-clockwise,
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In the sequel all elements are marked by a negative
number (corresponding to the question mark "?" above),
if at least one boundary line crosses the element. The
absolute value of this negative number serves at the same
time as counter of how many boundary points have been
found (or interpolated) within the element in consideration.
The interpolation of boundary points is necessary if their
mutual distance is, loosely speaking, too large relative
to the size of the element; the interpolation is linear, for
reasons of simplicity. As soon as the first boundary
has been completed (all boundaries need to be closed) and
the "border zone" has been marked, the region is filled
up with "1# ts (£ NO) if the region is to be contour-
free; the contour-regions bear a "Q", After all regions
have been processed, a pattern of ''?', uQn, wlw jg
obtained. This pattern represents the global information
of where contours have to be drawn and of where they
should be deleted. Fig. 2.8.5 shows such a pattern
associated with the boundary situation of Fig. 2.8.4.

In addition, all boundary points (primary and inter-
polated) which will be used to calculate contour-boundary
intersections are stored on an auxiliary vector. (Usually,
not all boundary points are needed, unless the boundaries
are completely inside the total rectangular plotting range;
e.g. consider the case of the complete world shore-outline
data bank and a plot restricted to Europe; then probabiy
only a couple of thousand out of the total 80 000 boundary
data will be used.)

The next step is already a part of the actual contouring.
The array filled up with negative numbers (boundary zones),

zeros (contour regions) and ones (contour-free regions) is

-
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checked, prior to the function value-contour value compari-
son; all elements filled up with "1" are branched; all
contour points are calculated and stored for successive

ngt elements.

As soon as the contour touches a negative valued element
(boundary zone), the program switches to a "close-up"
look for this particular area. The close-up region covers
only all boundary data within the element in consideration
plus all boundary data in the immediate neighborhood of
this element; This number of data is always very small
indeed (recall that one element has a maximum size of
3%3 mm). At this point v;re do not go into detail, this
would be a little bit too technical. The whole close-up
look consists in a series cf logical operations involving

a tree of pointer vectors; the only calculations are
integer additions -- therefore, this procedure is extremely

efficient and takes very little computer time.

Havi  .ssembled all local boundary points, the program
continues with the actual calculation of intersections which
is performed in a stable subroutine. Such aline inter-
section subroutine was available to the author in form

of an elegant flowchart (Neubauer, 1978). The subroutine
following this flowchart was programmed. If no intersection
has been found, the program continues and branches to the
next element. If one intersection has been found, there

is the problem of deciding whether at this particular point
the pen has to be raised or lowered. This decision is
enabled by a global information in terms of a logical vector,
assigned to the boundaries, which provides information about
the region behavior in a direction orthogonal to the boundary

(contour or contour-free); e.g., in Fig. 2.8.6 the points P,

i




o - —— e

-82-

P, are contour points, #37, ..., #42 are boundary points
of the boundary B,;; they represent, for this particular
element, the "close-up" ; (37, ..., 42) are only a part
of the boundary B,;. The global information consists in
the knowledge of which side of the boundary B, is contour-
free; then it is clear that at S thz pen has to be lowered
and the connection S-P, has to be plotted. The part P;-S

of the contour will be deleted.

/ boundary

Fig. 2.8.6 Close-up contour/simple boundary

The case of a single intersection point per element
is relatively easy to handle. Very detailed and rough
boundaries, however, may cause more than one inter-
section points. Moreover, the intersections may even
refer to different boundaries. In such a case the close-up,
the retrieval of the logical information associated with
each boundary, the calculation of all intersection points

and the pen position logics are much more complicated.
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2 boundary

/ contour

Fig. 2.8.7 Close-up contour/complicated boundary

E.g.: In Figure 2,8.7 the points P; and F, are
contour points as before., But now there are two boundaries
involved, B, and B;. The close-up of B, is identical with
B, -- it is a closed boundary within a single element con-
sisting of the points # 76, ..., #80 (the points #76 and
# 80 are identical because the boundary is closed)., The
close-up of B;, however, shows only a part of B; -- the
points #116, ..., #125, Altogether, 13 boundary line
elements are to be checked for an intersection with the
contour; 6 intersection points S5; ..., §, have been found.
Let us assume that boundary B, encloses a contour region;
clearly, the region to the right hand side of boundary B,

has to be also a contour region because of the alternating
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behavior of such regions. Let us now intersect all boundary
line elements with the line 13-1—152 , starting wi:‘.h boundary

B, in increasing order. Then it can be seen immediately
that the sequence of intersection points {Si] , 1=l, J.., 6
is more or less arbitrarily distributed between 1—:;1_52 (Ss, Sy,
S;, Sy S, Sg)e In order to make the pen position decision
it is necessary to know just one intersection point tcgether
with the boundary logics; all other pen positions follow

from the alternating behavior. This alternating continuation,
however, is only possible if the actual intersection point
sequence is known. This can be accomplished by first
transforming the intersection point coordinates into a new
coordinate system whose origin is, in principle, arbitrary
and whose x-axis is parallel to the line Py P;, and then re-
ordering the intersection points according to increasing
x-coordinates. The first operation is just a rotation of the
original coordinate system, the second operation is not so
trivial --it involves a sorting algorithm. GSPP uses an
algorithm written by P. Meissl which has been adapted for
this particular problem. In the case discussed above and
graphically shown in Fig. 2.8.7, the intersection point S;
belonging to the boundary B, would have the smallest trans-
formed x-coordinate among all other intersection points.
This point will also be taken for the pen-position decision
process: From the global information it is known that the

region to the right hand side of the boundary B, is a contour

Tegion; consequently, the segment P, S, has to be plotted,
§5__SZ deleted, Sy S; plotted, ... and so on. This completes step (4),

In th~ sequel the next element will be checked. If it has a
value ™Q" assigned, the contouring can continue without the

necd of close-up's and intersection calculations; the same

5 1 ATves o e st
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is true for values "1 --. in this case the program can''jump'!

from one element to the next until it finds all elements

with a negative value in which case steps (3) and (4) have

to be repeated.

ik

I smooth contours are requested, the program has to "remember" i

all intersection points including at least the pen position at 1 inter-

section point. The parts of the contour which have to be plotted are i r
then smoothed along the procedure described in section 2.8.1. The |

following Figure 2.8.8 serves as an illustration. Figure 2.8.9

shows that even for regions with very complicated boundaries the

procedure works absolutely correct and gives total resolution.

L 2.8.6 Region boundary plot . DBesides the suppressing of the

contour plot within certain regions, there is also a routine built in which
plots the actual boundaries. There is an option to plot some of them; %
there is the option to assign to each boundary a certain linewidth. ‘
In any case the boundary lines will be clipped off at the border of the i
rectangular plotting domain. The boundary points will be connected
linearly throughout.

The clipping process has been designed in the following manner:

assume the rectangular plotting domain R to be described by the coordin-

e e e g

ates [xo,x,, Yor V3Jo If a boundary line happens to be completely inside
the rectangle R, it will be plotted (after an optional mapping) immediately.
If a boundary line happens to be completely outside the rectangle R (all

[ ———

x-coordinates <x, or all x-coordinates > x, and/or all y-coordinates<y,

; or all y-coordinates > yy), the program skips this boundary and continues

'i with the next one. If none of the above conditions is true, the boundary :
i either crosses the border of the rectangle R or it is still completely 3
; outside R. The same is true for all line segments of the boundary. B
i The following number pattern is assigned to the nine rectangular
regions (1 closed, 8 open) generated by the boundary lines of the

plotting rectangle and its infinite continuations:
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1100 0100 0101 plotting domain

Xy R
R

1000 0000 0001
Xo

1010 0010 0011

Yo 1

One of these values is assigned to the boundary points according to

its position. Then it can be immediately verified that a line segment
is definitely completely outside R if the number, which results from

an addition of the codes of the two line segment points, contains at
least one "2%; if it does not, it may be completely outside but might
also be partly inside R, and therefore, intersect the boundary rectangle.

If the sum is zero, it is completely inside R. E.g.:

P, is in the region 1010, P, in 0011; the code sum

is 1021 -- therefore, the line ;:fDZ is completely outside
B. If P, is in 0101, then the code sum is 1111 --
therefore, the line Eﬁzcould cross the boundary of R.

I the line segment code contains a "2", the line segment will
be dcleted; if it contains only zeros, it will be plotted; if it contains
at least one "1" but no "2", the program finds the point(s) of inter-
section with the help of a line intersection algorithm described in
(Neubauer, 1978). If a mapping is defined and requested, all boundary
points {and intersection points) will be mapped; their connection will

always be linear regardless of the mapping.

2.8.7 Plot of horizontal and vertical axes. The axis routine

will be described in detail in Chapter 5 of Fart B. Here we mention that

a couple of axis options are available for a contour plot.

AN
’ h:d
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Any axis plot can be suppressed; the axis can be obtained on
the left hand side and on the bottom of the contour plot; the axis can,
in addition, be obtained on the right hand side and on the top of the
3 ’ contour plot. The axis itself consists of a straight line (which can
also be suppressed), tick marks and scale numbers. The tick mark
interval, the tick mark length and the tick mark direction can, within
certain bounds, be chosea by the user. If the user does not define
a tick mark interval, it is taken as the grid interval (for the surface

representation). The scale numbers can be plotted in 4 different

directions (k# m/2 , k=0, ..., 3); the symbol heights and the

R

number of decimal places can be defined by the user, otherwise default

values will be assigned (e.g,, such that at least 3 significant digits
are plotted). A scale number will always be centered with respect

to its corresponding tick mark, where the actual length of a scale

£ tem 8 e e >

number is determined by equation (2.8.2). If the sequence of scale
i numbers is too dense (such that overlapping would occur), certain
scale numbers will be deleted. In addition can the distance between

the tick marks and scale numbers be chosen by the user (within

certain bounds). Non-labeled tick marks will be 40% shorter than

labeled ones. No axis will be plotted if a contour mapping is invoi.ed.

2.8.8 Plot of a grid superimposed on the contour plot. In

order to make graphical interpolations ¢ nction values between tne
plotted contours easier, a grid plotting routine has been included in

) GSPP. The following grid patterns are available (Fig. 2.8.10):

full one, dashed line with arbitrary dash length and interval between
dashes, and a plot of open crosses at the grid points. The grid
distance is always identical with the tick mark interval. If a grid plot

has been requested and no grid parameters have been defined, a full

line grid will be plotted. No grid will be plotted if a contour mapping

Skl

is involved. TFurther details about a grid plot can be found in

Chapter 6 of Part B.
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2.8.9 Plot of data superimposed on the contour plot.

Especially when a surface is derived from a set of homogeneous data
(noisy or not), it is often of interest to plot the data with the contours
as background; this enables the user to check the goodness of surface
fit relative to the data. But also a plotof the data point locations and
contours might be quite useful if one wants to see how the prediction
works in data-free areas or in areas with poor data coverage. In
order to satisfy all needs, GSPP offers the following 3 options: only
data position symbol plot, data position symbol plot and data number
plot, data position symbol plot and data number and data value plot.

The position symbol can be chosen among all symbols available
(differs from one plotting software package to the other) -- some of
them (0, ..., 13 for IBM software) give centered symbols, some of
them don%. The data number and the data value will always be
symmetrically located relative to the data position, the data number
above the data position, the data value below the data position. The
symbol height can, within a certain bound, be selected by the user;
the same is true for the number of decimal digits for a data value
plote In any case,the symbol height of the data number will be half
the symbol height of the data value; this:is to distinguish them more
easily.

Besides the data plot there is also the possibility to plot the
predicted data in the same way as described above (plot the grid point
locations and predicted value at the grid points).

If a mapping is involved, the data coordinates will be mapped
in the same way as the contour point coordinates. In any case a data
point outside the rectangular plotting domain will never be plotted.

Figure 2.8, 12 illustrates a data plot superimposed on a contour plot.
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P
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Figure 2.8. 12 Contour and data plot
|
e 2.8.10 Title and label control and plot. Titles and labels are
’ used to identify plots. For this reason GSPP offers the possibility of

a title plot, consisting of up to 10 title lines, as well as single line
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horizontal and vertical label plots (a line is to be understood as a
maximum of 80 characters = information stored on one punched card).
The height and line width of the symbols can be chosen by the user within
certain bounds.

The title plot routine itself is intelligent. It offers the title to
be plotted in the following four ways: same as on the input cards
(default), left justified, centered, right justified regardless of how
the title information was actually punched. If the title length exceeds
the actual length of the contour plot, the symbol size will be reduced.
If the reduced symbol height happens to be smaller than the allowed
lower limit, the lower limit will be chosen and the title will start
on the left side regardless of the requested mcde. The symbol size
will also be reduced automatically when the total title height exceeds
upper limits, fixed by GSPP. The title will always be plotted above
the contour map; its position, relative to the upper left corner point
of the rectangular plotting domain, can be chosen by the user -- if not,
default values will be assigned.

Two single line labels, one along the horizontal, one along the
vertical axis can also be plotted. As long as the label length does not
exceed the corresponding length of the contour plot, the label will be
centered relative to the contour plot. If it exceeds this length, the
symbol height will be reduced automatically, but not below a minimum
height defined in GSPP. If the label length, with minimum symbol
height, is still bigger than the corresponding length of the contour
plot, it will no longer be centered; irstead, it will be left-justified.

Usually, the labels will be plotted along the left vertical and along
the lower horizontal axis; however, when axes are to be plotted all
around, also labels will be plotted all around. In this case the title will
also be shifted automatically in order to avoid a possible overlapping.

No title and no labels will be plotted if a contour mapping is requested.

P e =
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Further information about the title routine can be found in E :
b
% Chapter 7 of Part B. P
: o
E :
t v
GSPF - CONTOUR PLOT TEST -
DEPT. OF GEGDETIC SCIENCE, f%
THE GHIO STATE UNIVERSITY, S
SEPTEMBER 1979 ;
n
i
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Figure 2.8.13: Contour, title, and label plot - 4
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2.8,11 Contours of surface derivatives. The centouring part
of GSPP has been designed primarily for a contour plot of the surface
itself. The surface is defined as a bicubic spline function which is
» determined by function values at the grid points of a regular rectangu-

lar grid. For the contouring it is of no concern whether the grid

oot gt T Smton™ WA Ll s e WA TN
PRPUPSRREES

o USSR

values were known in advance or if they were predicted on the basis
of other, probably irregularly distributed inhomogeneous data, or if
they are function values derived from a least-squares regression
polynomial, All of them represent a surface which is interpreted as
a bicubic spline function.

Apart from surface contours, GSPP also offers contours of

surface derivatives up to and including a second derivative in both

coordinate directions. Therefore, contour plots of the following surface

\

; derivatives can be requested from GSPP:
i

{

|

|

D f, D f{,
X y

o
o

D f, D f
Xy

The derivatives are calculated according to the set of equations (2.6-7b),

which are derivatives of a bicubic polynomial. Since a bicubic poly-

nornial is twice continuously differentiable with respect to both independent

variables, the highest derivative offered, Dxx f, is still a continuous

[ R

function; it is a continuous and piecewise bilinear function and

a ’ therefore, a hyperbolic paraboloid (cf. Section 2.7). All lower order

derivatives will be functions of higher order, and therefore, smoother.
The following Figures 2.8.14(a,b, c) show a contour plot of

a surface, its first derivative in x-direction and its highest allowed

derivative D f. From the D f plot one can see very clearly the
=yy xyy

@t

contour's tendency to run in directions along the asymptotic lines of
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Figure 2.8.l4a: Surface contours
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the hyperbolas, which are parallel to the coordinate lines, and along

the axes of the hyperbolas which span an angle of 45° and 135°,

respectively, with the coordinate lines. These features are particularly

pronounced in Fig. 2.8.14c because of the big size of the grid ele-

ments used (2x2 c¢m). This happens always when bilinear elements

are contoured.

Since the bicubic elements are approximated by

bilinear elements, the same is true even in the contouring of surfaces.

However, the size of the subgrid is kept so small that the effect cannot

be seen anymore.

eaud ook

3. PROFILES

The term "profile" is usually thought of as a curve which results

from an intersection between a surface and a vertical plane. Here we

>

understand by profile a curve which can, but needs not necessarily be,

Ix)

a curve of intersection in the usual sense. If a curve is defined by

a vector of pairs (x,y) with y; = y(x;) function values at x;, we
speak about an "explicitly defined" profile.
a surface (or data which are to represent a surface) together with
profile start and end point, we speak about an "implicitly defined”
profile. If more than one explicitly defined profile is to be plotted
in the same frame, we will speak about a "rnultiple profile',

GSPP can handle these three types of profiles with a nu:nber
of options and additional features like profiles of surface derivatives,

profile derivatives, profile information, and many others, fully auto-

matically, The following chapters describe these features in detail.

If aprofile is defined by
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3.1 Explicitly defined profiles

As already stated in the foregoing introduction, an explicitly
defined profile is thought of as a curve which is sampled by a vector
of increasing arguments {xi}, i=1, .., I together with a vector
of function values {yi}, i=1, ..., I. Of course, there is a number
of ways to connect these sampled curve points. One could think of
a polynomial interpolation or least-squares interpolation, etc. GSPP
essentially offers three kinds: a simple sample point plot, a piecewise
linear interpolation, and a cubic spline interpolation.

Profile derivatives can be requested up to the second order;
derivatives will be derived from a cubic spline representation of the
profile. The corresponding routines have been described in Sections
2.6.1 and 2.6.3. As far as the spectral content of the spline
representation is concerned, the reader may consult Section 2.5. 1.

The actual plot of the profile is performed within a window in
x- and: y-direction ( argument window and function value window). If

a window has been defined by the user, the curve will be clipped off

when it leaves the window. The clipping algorithm is essentially identical
with the one described in Section 2.8.6. If no window has been

defined, the minima and maxima of the {xi] and {yi} vectors are
assumed to coincide with the bounds of the window.

3. 1.1 Optional profile procedures. The profile interpolation

can be done piecewise linearly or by an interpolating cubic spline.
For reasons of stability, the spline is calculated piecewise and over-
lapping if the number of data points is too large (see Section 2.8.1).
If no interpolation is requested, the profile points will be
marked by a centered symbol which the user can choose.
The plot of horizontal and vertical axes is identical to that one
described in Section 2.8.7 with the exception that no horizontal axis

can be plotted above the profile plot.
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Analogous to the superimposed grid in the contour plot, small

crosses can be plotted at the intersections of grid lines (horizontal

and vertical lines at tick mark intervals)., These crosses will only

be plotted below the profile.

In addition, there is the option to

draw a horizontal "zero-line" whenever the plotting window for function

values contains the zero point.

Title and label piots are also identical to those

in Section 2.8.10.

described

As far as the plot of profile derivatives is concerned, there

is the option to plot the first or the second derivative.

Since the

derivatives are taken from a cubic spline vrepresentation, the second

derivative will still be continuous -- it is a piecewise linear function.

The following Figures 3.1,1(ab, ¢) serve as illustration examples.
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3.2 Multiple profiles

In the case that one or more profiles have to be compared with
each other, it is advantageous to plot all of them in the same frame.
In that case there is one natural restriction: the plotting window for
all profiles have to be identical and to be known before the first
profile is plotted. If no such plotting window has been defined, GSPP
assumes the minima and maxima of the first {xi} and [yi] vectors to
represent the window. However, in this case an unwanted clipping of
further profiles (in the same frame) occurs whenever it exceeds the
x- and y- minima/maxima of the first profile,

In order to simplify the identification of the different profiles,
two additional features (relative to the single profile plot) have been
built in: the profiles can be marked by centered symbols, each pro-
file by a different one; the number of symbols relative to the number
of profile data points can be selected by the user. Furthermore, there
will be a legend plotted at the right end of the profile which consists
of alist of symbol-input sequence identifications. The symbol plot
along the profiles and the corresponding identification plot can be
suppressed if so desired. Figures 3.2.1a, b show multiple profile
plots without and with symbol suppressing.

The linewidth can be changed from profile to profile. Also
the derivative can be changed from profile to profile.

All other optional procedures like axes plots, title and label

plots, etc., are identical to the single profile case.

3.3 Implicitly defined profiles

A profile derived from a surface is herein called an implicitly
defined profile. The surface is assumed to be a bicubic spline surface
defined on a regular rectangular grid. If the data are not regularly
distributed, the spline surface will be predicted first. Of course, this

would not be necessary if only a single profile is calculated; usually
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COVARIANTE FUNCTION FOR GEQIDAL HEZIGHTS, MCOEL T2
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one needs a number of them and this is why we have decided to
predict the whole surface. The prediction processes are identical

with the ones described in Section 2.2, the spline representation is

described in Section 2.4.2. The other essential information is the

start- and end- point coordinates of the proiile in consideration.
The profile needs not necessarily be a surface profile --

it can be a profile of any derivative of the surface

s st g smdin Nk g A
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or also a profile of

a
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(3.3-1)

(3.3-2)

with ds the line element of the straight line connecting start- and endpoint

of the profile. All derivatives (3.3-1) are discussed in Section 2.6. 3;

the derivatives (3.3-2) are simply the projection of the surface gradient

onto the unit vector e with direction B-F, (F... start point, B...

endpoint), el = (cos A, sin A)

with the second order tensor

32 d%f
Xt ox0y

o d%f d%¢ '
dxoy Byz

then (3.3-4) has the form
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3% = f cos® A +2f cos Asin A+ f sin’A (3.3-4)~
ds’ pron xy vy ) )

Since the bicubic spline is twice continuously differentiable with respect
to x and y, the derivative 3f/9s is continuous and has even a continuous

derivative; 3% /as? is only continuous.

The actual calculation of the profile is done pointwise along
the line Fj-F, with a sampling rate of 2 points/mm; the profile is
then a linear connection of all profile points.

3.3.1 Implicit profile procedures. There are a couple of

features whicl sre only connected with the implicit profile plots. First
of all, the request for a smooth profile point interpolation will be
ignored because the function itself is already smooth and the profile
point sampling rate is sufficiently high; therefore, a smoothing would
show up no difference to the linear point connection.

Since GSPP is capable of calculating and plotting 100 different
profiles by just a single call, it is absolutely necessary to identify
the different profiles. This is done automatically by a start- and
endpoint message which appears at the bottom of the profile (see Figs.
3.3, 1 a,b). This message will always appear and will be
centered unless its length exceeds the profile length even with minimal
symbol height -- in this case it will be plotted left justified.

If the coordinates of the start- and/or endpoint are such that
the prcfile happens to be outside the actual surface domain by 10%
(this is the rectangular region on which the bicubic spline surface is
defined), the plot will not be executed for this particular profile and
an informative message will be edited on the line printer (or any other
selected output unit).

Another difference Hr the explicit profile plots is the scaling
of the horizontal axis, There are essentially two kinds of scaling

offered by GSPP: a)the scaling is done according to the actual
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distance Fy-F, with a tick mark interval which can be either chosen
by the user or can be determined automatically;

b) a value 1.0 is assigned to the total length Py-P, and the scaling is
done accordingly.

A last difference is the grid plot: recall that a rectangular
plotting window can be selected in the contour plot (see Section 2.8.4).
When such a window has been defined and the profile runs within the
window, crosses will be plotted at the intersections of grid lines
(horizontal and vertical lines at tick mark intervall At the point
where the profile crosses a window, a vertical bar will be plotted
with the same linewidth as the profile itself; outside the window but
inside the surface domain tiny crosses will be plotted instead of
normal size crosses in order to indicate that this part of the profile
runs within an area for which no contour plot has been performed.

No profile and no crosses will be plotted if the profile leaves the
surface domain up to the above mentioned 10% limit. Crosses will
only be plotted below the profile. The following Figures 3.31{a, b, c)
illustrate different kinds of profiles.

4, THREE-DIMENSIONAL SURFACE REPRESENTATIONS

A 3-D representation of a surface is, in this context, to be
understood as a projection of a two-dimensional surface which is
embedded in a three-dimensional Euclidean space, onto a plane. The
plane can be arbitrarily oriented in space. The surface can be given
either explicitly by function values at the grid points of a4 regular
rectangular grid or by irregularly distributed data in which case a
prediction algorithm (Section 2.2) takes care of the prediction of
function values at all the grid points. Again, the surface is considered
to be a bicubic spline surface defined by the function values at the
grid points (see Section 2.6.2). The bicubic spline surface is then

approximated by small bilinear elements; the function values at the
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FUNCTION : GEGIDAL HEIGHT
AREA: LAT 1 - 8, LON 1 - 9

H. SUNKEL, 0SU, JAN. 09, 1979
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subgrid points (the grid on which the bilinear elements are defined)

are interpolated spline-surface values. Up to this step the 3-D pro-

cedure does not differ from the contouring described in Chapter 2.

In the contouring procedure, these bilinear elements have to be

intersected with a number of horizontal planes; in 3-D representations

the bilinear elements are projected onto a plane with arbitrary

orientation in 3-D space.

4.1 The projection ; i

In principle, one could think of any kind of projection of the : }
surface onto the plane. GSPP assumes that thée projection is an
axonometric projection, where the center of projection is located at

infinity. Consequently, two parallels will remain parallel after the

projection. (The projection equations used in GSPP could easily
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be changed; therefore, it is,in principle, possible to obtain two
perspective projections from two different centers of projection
plotted in two complementary colors [red and green], which, viewed
with anaglyph glasses, give a three-dimensional impression of the
surface. )

The axonometric projection used in GSPP is defined in the
following way: Assume the surface z = z(x,y) to be defined on a
rectangular domain D, with the lower left point of the rectangle
coinculing with the origin (x=0, y=0), and the sides of the rectangle
parallel to the coordinate lines. Liet a plane pass through this origin,
The orientation of the plane is defined by two angles, the longitude A
and the co-latitude 8 in the following way: a coordinate system
(x, Y, z) is associated with the plane with X =x, :; =y, z=z if
A=0and § =0. Let now the surface be fixed and let the plane rotate
around the z-axis by the angle A in the positive direction (looked upon
from the origin, this is a clockwise rotation; looked upon from a
point above the surface, this is a counter-clockwise rotation). The
rotated coordinate system will be called (x',y',z!')-system. Any point

P with coordinates (x,y, z) will have coordinates

x! x
y'} = RyvYy
z! 4
with cosA  sinA 0 -1
R; = | -sinA  cosX 0 ‘.

L oo 0 1

The second rotation will be performed around the x'-axis by an angle g
in the positive direction (as defined above). The so obtained coordinate
system is called (x, Y, z)~ system. In order to be clear, after the

transformation the two planes z=0 and z=0 span an angle 8 with each
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other. Any point P with coordinates (x,y,z) will, therefore, have
coordinates 1
x o
X {
1 B ) e \
y = ReByl y L
- L
2 o
with i , % A
1 0 0 L
Ry =10 cos 8 sin 6 . |
| !
L 0 -sin§ cos 8 ‘ : :
and written explicitly , | B\
X = xcosh + vy sinA :
y = -xcosB sin\ + ycosBcosA + z sinb (4. 1-1)
z = x sin§sinA - ysinBcosX + zcosb. u
The next step is the projection of the point P, from the center of
projection on the z-axis at infinity, onto the (;,;) -plane, which gives
the Cartesian coordinates of the image point P* of P,
x* = ; i Ve
= P |y (4.1-2)
* “»
Yy - ]
Z 1
with 1
) 1 0 0 i
- P, 7 . K
0 10 .
|

Combining (4.1-1) and (4.1-2), replacing the co-latitude § by the latitude
¢ =90 -8 , allowing a coordinate shift in the (x*, y*) - system and scale

e A ettt it 3 2 m

factors cy for (x,y) and ¢, for z we obtain the final projection equations
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x*=x, + (xcosA + ysind)cy

. * (4. 1-3)
Yy =y + (-x sin® sinA + ysin@cosA)cy+tzcosPc, .

Another interpretation of (4.1-3), apart from the shift (x¥, y¥ ) and
the scale factors, is the following: The surface domain is a rectangle
in the equatorial plane with the x-axis through the origin and with
orientation angles ®=0 and A = 90° ; the y-axis passes also through
the origin with orientation angles ¢ =0 and X\ = 1809; then the sur-
face is, according to equation (4.1-3), looked upon from a point at

infinity with coordinates ¢ and A on the unit sphere.

4,2 Scale and shift

In a 3-D plot the user usually faces the difficulty of reducing
the coordinates x,y and the corresponding function values z such that
the figure "looks nice'. Moreover, there is the problem of getting the
plot on a particular place of the plotting sheet. This would make a
number of decisions and calculations necessary if the data are already
regularly distributed on the rectangular grid and if they are known to
the user, He would first have to find the minimum and maximum of
the function values, then make the necessary projections in order to
find out the plotted size of the surface and so forth. If the data are
irregularly distributed, probably heterogeneous and noisy, such a
decision usually becomes a pure guess. GSPP is smart enough to do
this job if the user wants it to be done, moreover, he can still make
all or part of his decisions -- GSPP will accept them if they are
consistent and reasonble, and will reject them and replace them by

reasonable ones if they were unreasonable.

Let us briefly describe how GSPP finds scales and shift parameters:

The scale factor c; is determined such that a 2-D plot would have an
across the plot sheet extension of 10 cm. Since an axonometric pro-

jection reduces lengths (or keeps it constant), a square of 10 x 10 cm
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never exceeds an along or aci0ss maximum of 20 ccn. The next
step consists in the calculation of the minima and maxima of the surface
function values. These extreme wvalues are projected using a simpli-
fied form of (4.1-3) and the scale factor c, for the function values is
determined such that the projected difference of these extrema is

7.5 cm. If the values (0,0) are assigned to the direction of view

(XA,? ), GSPP will interpret them as 'no input" values and will assign
default values = -60°, 9= 30° which usually gives a nice view of the
surface, In order to find the actual along and across (the plot sheet)
extensions, it is necessary to find the projected coordinates of the

four corner points of the rectangle with minimal and maximal function
values assigned to them. This gives obviously only upper bounds of
the 3-D plot size which are then used to find the appropriate shift
parameters (x¥ , y¥ ). (The determination of the exact extension
across the plot sheet would make the projection of all surface points
necessary. This is a rather time-consuming task and should, therefore,

be avoided.)

4,3 The 3.D plot

As soon as the bicubic spline surface is available, a piecewise
bilinear approximation will be calcuvlated by a simple interpolation pro-
cedure. The size of the bilinear elements can either be chosen by the
user or, otherwise, will be selected by GSPP. The interpolation is
done first row wise, then columnwise: the first along profile, a con-
tinuous and piecewise linear function is interpolated from the surface,
is projected using (4.1-3) and plotted; then the next parallel profile is
interpolated and projected. This profile and further profiles have to
pass a hidden line algorithm which determines the actual visibility of
the profile; those profiles or portions of profiles which are hidden by
previous profiles are masked and will not be plotted. The hidden line

algorithm used in GSPP is a modified version of that one described in

)
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(Watkins, 1973). In this way all horizontal and vertical profiles of
the surface are treated. After completion a frame is plotted which

also passes the hidden line algorithm. The frame plot can be suppressed.

4.4 Additional and optional procedures

In any case , information about the viewing direction will be
plotted in the lower left corner of the plot. This information gives the
used values of the longitude and latitude of the direction of view in
degrees and minutes.

A rectangle will be drawn around the entire plot; it can
be suppressed.

At the top a title consisting of no more than 10 title lines can
be plotted in the same way as for the contour and profile plots (with
options: left justified, centered, right justified, or as on the input cards).
The following Figures 4.4.1(a, b) show a contour plot and a corresponding
3~dimensional view.
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GSPP - TEST

H. SUENKEL, 0OSuU, GS
APR. 1879
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Figure 4.4.1b: 3-D plot corresponding to Fig. 4.4. la
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PART B
ISOLATED PROBLEMS
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It could have been anticipated at the beginning of this report
(and actually shown in PART A) that contouring, profile rfinding and
drawing, and the generation of a 3-D plot consists of many pro-
ceduress The user of GSPP need not be confronted with the solution
of these problems; however, many of these procedures (or sub-
routines) can be used in an isolated form and might be quite useful
as such or as parts of other algorithms. Therefore, this section of
the report discusses all the procedures and algorithms which are

independent but integrated parts of GSPP.

l. Organization of data

As part of the contouring algorithm, the data sorting and
retrieving procedure was briefly described in Section 2.1 of part A, By data
organization we understand an algorithm which generates pointer
vectors based on the two-dimensional distribution of the data. These
pointer vectors should make a very fast retrieving of data within a
specified array possible. The generation of the pointer vectors should
take as little time as possible since a huge number of data will be
organized. The following is a description of the method used by GSPP.
The organization is performed by the subroutine OAF.

First, the working (or organization) domain, which is assumed
to be a rectangle, has to be defined by its lower and upper x- and y-
coordinates (the sides of the rectangle are assumed to be parallel to
the coordinate lines). This rectangle is divided into M#N subrectangles
of equal area (M in x-direction, N in y-direction). The program finds
for each coordinate pair (x,y) thecorresponding element (m,n). After
a couple of operations (mainly integer additions and subtractions) four
pointer or counter vectors are generated, IC1(.), ..., IC4(.):

The vector IC1(.) has a length equal to the number of data
and contains, after completion, the element index i corresponding to

each data. The element index i results from the two subrectangle
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indices (m,n), associated with a data point (x,y), and is calculated

according to
i = (m-1)N+n,

which means i increases rowwise if x is oriented northwards, i increases
columnwise if x is oriented eastwards. Therefore, i = IC1(j) is the

index of the subrectangle in which the data point (xj, yj) is located.

If the data happens to be outside the working rectangle, an index

M#N+ 1 will be assigned.

The vector IC3(.) is a counter vector of length M#N+1; IC3(i)
equals the number of data in the subrectangle with index i, IC3(M#N+1)
is equal to the number of data outside the rectangular working domain.

The vector IC4(.) is an auxiliary vector of length MaN+1 ; its
elements are partial sums of the elements of IC3(.): IC4(1)= 1,

IC4(k) = IC4(k-1) + IC3(k-1), k=2, ..., MaN+1,

Finally, the most important vector is IC2(.); it is organized in such
a way that the first data in the subrectangle with index i has the original
index IC2(IC4(i)); its length is equal to the number of data.

The data retrieving process runs then as follows. Assume one
wants to know all data which are located within the element i: there
are altogether IC3(i) data in this element; the index of the first data
is IC2(IC4(i)), the index of the second data is IC2(IC4(i)+1l), and so
forth; the last data has the index IC2(IC4(i) + IC3(i)-1). X there are
no data within the element i, then IC3(i) = 0 and the index counting
would be one step backward, Therefore, whenever there are no data
within a particular element, the index retrieval described above does
not apply.

The following example may illustrate the foregoing (Table 1.1
and Fig. l.1)s This kind of data organization is extremely fast because
there are only very simple and very few operations involved; the data

itself are not shifted -- they remain on their original storage locations,
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Cc A DATA ORGANIZATION EXAMPLE
C SUBROUTINES USED : OAF
c OUTPUT UJIT : 6
COMMON ,XDAT/X(30) /YDAT/Y(30) ~USORPR/ZMI,XMA,YMI,YMA,DUMMY(2),M,
* N /SORT1/1C1(30) /SORT2/1C2(30) /SORT3/1C3(13)
* /SORT4/IC4( 13)
C THE VECTORS IC1(.), ..., 1C4(.) NEED NOT HAVE THEIR PROPER DIM.
C AS LONG AS THE NUMBER OF DATA IS LESS THAN OR EQUAL TO 1600 AND AS
g LONG AS THE NUMBER OF SORT ELEMENTS IS LESS THAN OR EQUAL 10 1000
C TOE COOHDIRATES OF THE DATA POINTS HAVE TO BE STORED ON X(.) AND
C Y(.). HERE WE GENERATE THESE DATA :
C THE NUMBER OF DATA IS NDAT
NDAT=30
DO 1 1=1,NDAT
HCI)=SINC I2, )+0 1
1 Y(1)=C0S(I:3.)
C DEFINE THE ‘\ORKING RECTANGLE
XPII"-IO
RiA=1.
YA,
C DEFINE THE RUMBER OF SUBRECTANGLES (SORT ELEMENTS) FOR THE DATA
¢ ORGANIZATION
M=2
C THE NUMBER OF ELEMENTS IS 12
g g?%&ﬁ? DATA ORGANIZATION SUBROUTINE OAF (ONE ARGUMENRT = NUMBER
CALL OAF{NDAT)
c PRINT THE RESULTS (INDEX, DATA, VECTORS IC1(.), ..., IC4(.) )
WRITE(6,6000)
MN I=MxN+1
DO 2 I=1,NDAT
IFCI.LE.MN1) WRITE(6,6001) I,X(I),Y(I),ICI(I),IC2(1),IC3(I),IC4CI)
IFC(I.GT.MN1) WRITE(6,6002) I,X(I),Y(D),ICIC(I),IC2()
2 CONTINUE
6000 13’(()!{11)‘!1‘\1‘551)10.4}{. b | xn YD ICI(D) Ic2¢(I) 1IC3(I) 1IC
6001 FORMAT( 1H ,4X, [2,2(2X,F6.2),3X,418)

6002 FORMNAT(1H ,4X,I12,2(2X,F6.2),3X,218)

STOP
END

Program for Table 1.1

Py

PV

e mmmbi b asint st 7
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as 1.00 0.89 13 v
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2. Prediction

The basic principles of the prediction methods offered by GSPP
have been shortly described in section 2.2 of PART A. In this chapter

the practical aspects of least-squares prediction will be discussed.

The idea of least-squares collocation is to take into account all
gravity field information, represented in terms of a heterogeneous data
set, for the prediction of other gravity field quantities; in the ultimate
case of collocation, model parameters can be incorporated into the
solution.

This fine concept can hardly ever be fully realized in practice;
reality demands sacrifices. The following facts make the unified solution
a prohibitive task: covariance matrices are, in contrast to network
normal equation matrices, full matrices. (In collocation one has to deal
with the continuum !''gravity field!', in network problems with the discrete-
ness of a continuum.) The size of the matrix depends, again in contrast
to network problems, on the number of data. The more data we have,
the better we have sampled the gravity field and -curiously enough- the
more difficult it becomes to determine the gravity field: the instability
of the covariance matrix increases with the data density since the equations
become nearly linear dependent. Apart from the instability there is the
problem to store the matrix - a very serious problem if more than a
couple of thousand data are involved, not to speak about the actual in-
version or calculation of the solution vector. Last, but by no means
least, there remains the actual calculation of the signal (the gravity
field quantity) together with its estimated error at a huge number of grid
points -- we have to keep in mind what we actually want: the determina-
tion of a gravity field surface which is sufficiently well represented by an
array of function values together with an appropriate interpolation function.

How can we overcome these problems, what are the consequences?
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A widely applied and generally accepted practice is data selection.
(If in trouble, select -- in analogy to Jeffreys recommendation '"'If in

doubt, smooth!'.) It is an obvious and well understood fact that the data

in the immediate neighborhood of the prediction point, in general, contributes

B i o b

the most and remote data very little to the prediction of the -

gravity field quantity. (This does not hold, e.g., for the prediction of

geoidal heights from gravity anomalies.) Local samples are considered

diction depends primarily on the problem (and sometimes on the personal

!
!
L rather than regional or global ones. The number of data used for a pre- : £ {
i
|
{

taste). Rapp (1979) uses only a very few (around 5) altimeter data for
the prediction (or rather interpolation) of an array of geoidal heights and 3
| in (Rapp, 1978) some 200 points for the recovery of mean gravity anomal-
ies from altimeter data. Schwarz (1976) stresses the fact that neighbor-
E hood - data are the essential information and suggests a data selection.
Lachapelle (1977) considers some one-to-two hundred gravity anomalies
and deflections of the vertical for the combined solution collocation and
§ integral formulas. ﬂ

The consequences are as follows: local collocation solutions

prevent an estimation of regional and global parameters like datum shifts

for obvious reasons. Collocation in the local mode can only provide a less

than optimal gravity field solution since an optimal solutim would require

all data to be taken into consideration. This is the price we pay for a

gain in matrix stability, limitation of storage requirements and for keep-

ing the computation time at an acceptable level.

In gravity field surface prediction, the factor time plays, apart

VROV IR

from the others discussed above, a particularly important role, This
is why only local solutions can be envisioned under the present circum-
ki stances. )

The surface prediction algorithum of GSPP is designed for the

’ local mode only. It considers up to 100 data in the neighborhood of the

prediction point, (This number has been kept low because of the

ORI - - z
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storage limitations of {ne used computer; an increase to200 or even
300 for a larger computer system requires only a few changes in
the program.) In order to represent the gravity field surface suf-
ficiently‘well, a high density of prediction points (grid points) has to
be chosen. If nct more than 100 data are found in the prediction
region, the algorithm uses all the data, calc'dates the inverse of
the corresponding covariance matrix and predicts the signals tog °ther
with its rms-errors at all grid points. The situation changes if
more than one hundred data are used. The algorithm switches over

to a mode which can best be described as moving inverse covariance

prediction. Its principle is as follows. Assume a fairly homogeneous
data distribution and a grid as in Fig.B2.1l. gravity field surface
function values are to be predicted at all the grid points. Assume
furthermore a circular region Rj centered at the grid point Pj and
another circular region Rj4 centered at a neighbouring grid point
Pi4; (see Fig. B2.1). All data within R; are used for the prediction of
Si (the gravity field surface function value at the grid point Pj), all
data within Rj4] are used for the prediction of Sj4;, have a common
subset Sj i+] which is the intersection of Sj and Si4i,

Si, i+l = Si n SiHl .
In Fig.B2.1 the subset S}, 2 consists of the data (black dots) within the

crosshatched region.
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Figure B2.1: Data selection in moving inverse covariance prediction
mode

Let Nj and Nj+] be the number of data belonging to the set S; and

Si+1, respectively, and let Nj i+]1 be the number of data belonging

to the common subset Si j+1. (In Figure B2.1, N = 28, Nz = 30,

N2 = 27.) The corresponding covariance matrices are Ci and Cji4,

its common part Cj, i+l. I the grid is dense relative to the data

distribution (a necessary requirement for surface prediction), then

Ci+1 will differ only slightly from Cji; with other words, the dif-

ference matrices Cj Ci, i+l and Ci+]-Cjy, i+1 will have only a few non-

zero elements. (In Fig. B2,1 Cy has 406, C, has 465, C), 2 has 378;
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therefore C1-Cy,2 has only 28, C2-C) 2 only 87 in general non-zero
elements. Here we have considered only the upper triangular part
of the symmetric covariance matrix.) Consequentlv, it should be
possible to find Ci-.;l_l (the inverse covariance matrix corresponding
to point Pj41) in a fast and simple way, if C{l is known. In fact,
the problem reduces, in principle, to a two-fold application of matrix
inversion by block-partitioning.

Let C; be partitioned into 4 parts Cj, j41, Bi» Bi, Dj and

similarly its inverse C{l into K;, Ly, L;r, M,

O
!
Q
:!a-.
—t
w
Q
!
Pt
H]
~
~
/
™
=z

There it follows from simple matrix algebra (Faddejew - Faddejewa,

1970, p. 201 £f.), that

= T .-l -1
My = (Dj - By Cj i1 By) (2.2a)
L, = "cl.. BM (2.2b)
i i, 14l T4 '
S| T
K, = ci,i+1 (1 - B.L ) (2. 2¢c)

with I denoting the unit matrix. In the same way as above, the matrices

-1
C. and Ci+

i+l can be partitioned.

1

- - Zl
Cin Cii B}  Cin Kin Min (2.3)
T T
Bin  DPin Lin Min

Note that C. . is common to both, C. and C. ., and so is the inverse

-1 ]
C. i+ If this common inverse is known, then ci+1 can be found in the
i, it+l.

way described above,
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- T "1 -1
Mg © @i - Biy C4 i1 B! (2. 3a)
L., = <! B .M (2. 3b)
i+l i, i+l TiHl Uit '
K.. = ¢l (1-B.. 1r.) (2. 3¢) :
i+l i, i+l i+l it *

(atiiiin el a2 4

aat e

2 i dh e i

Therefore, the problem of calculating C;_1+ if C-;lis known, consists in

13
L K., , following the equations

. 3s -1 . .
finding Ci,i and in calculating Mi+ w1 Bin

+1 1’

abovea
Multiplying equation (2.2b) by M;lL'ir, we obtain

-1 BLT

-1 T _
LiMi]Li = -Cy Bty

which gives, by inserting into (2.2c), the inverse of the covariance matrix

corresponding to the common data set Si , expressed by the known four
?

1 i+l
submatrices of Ci R

-1

Ciint = (2.4)

K. - LMLY,
1 1 11

The important point is that Mi as well as Mi+ is usually very small

compared with Ci, " (for the data configura.tlion of Figure 2.1, M,
has dimension (1, 1), M, has dimension (3,3) and Cy,, has dimension
(27,27).) It is important to realize that, for the transition from C.il to
C-:H. , only two inversions of generally very small matrices with dimensions

of Mi and Mi+ are necessary. (The vector and matrix multiplication are

relatively inex:)ensive.)

There needs still one problem to be solved which was tacitly passed
by: the matrix C';l has to be re-ordered according to a permintation vector
whose elements point to the data within the prediction circle. This pro-
cedure consists mainly of logical operations and is very fast; it is accomp-

lished by the subroutines BUBBLE (which riakes a vector bubble sort,
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generating the permintation vector), and MATUMD (which does the actual
matrix reordering).

The principle is as follows: Ni data were found in the region Si’
a vector Vi is stored; its elements point to the data in Si, the inverse

. N S . .
covariance matrix Ci is given; in the next step Ni+1 data are found in
is generated whose elements point to the

the region S a vector Vi+

i+l’ 1
. N, . ,elements are common to V, and V,
1 i, i+l i i+
responding sequential locations within 'Vi and Vi

data in Si+ 1 but the cor-
" will, in general differ.
Therefore, vi+1 passes a sorting algorithm which ''bubbles!' all common
data in V
Ny, i1 41

common elements occupy the first Ni

upward such that, after the bubble sort, the N. in

places in the vector Vi+ A

, i+l 1’
pointer vector Wi is generated whose elements point to the retained

elements in Vj.

j Vi(j) Vi (i) Vi+1(j) Wi(j)
before sort after sort

1 3 7 3 1

2 17 8 8 3

3 8 79 24 4

4 24 3 45 6

5 11 41 7 2

6 45 24 79 5

7 45 41

8 13 13

Table 2.1 Example of bubble sovt used in the prediction part of GSPP
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This vector W serves as a permutation vector for the re-ordering of
the inverse covariance matrix Ci’l.

At this point the reader might ask why we are calculating
the inverse covariance matrix; we could probably apply a
similar z;.lgorithm for the calculation of the solution vector of the
linear system.

Ca = Cp (2.5)

with C...covariance matrix,

Cpne .. Cross-covariance vector (signal-data)

P
o. . » solution vector

Note that the right side of equation (2.5) is Cp and not the data

vector 4; this can be done since we estimate for each solation vector

only one signal. The predicted signal is then given by

Sp = all (2.6a)
and its estimated error variance by
2 _ T

This method is reportedly two to three times faster (Lachapelle, 1977)
essentially because it bypasses the matrix inversion. Here the
inversion method has been chosen siuce it looked more transparent
to the author; the solution vector method should be investigated.

As mentioned before, the use of the moving inverse prediction
method is somewhat restricted; it is very advantageous for the
solution of very large problems which reduce essentially to interpola-
tions, differentiations and/or downward continuatious; examples are:
determination of a digital geoid based on altimeter data, solution of
the Bjerhammar problem, prediction of mean gravity anomalies from
point gravity anomalies, gravity interpolation, interpolation of
vertical deflections, determination of mean gravity anomalies from
gravity and gradiometer data, etc. For the solution of problems
which involve the whole data vector and allow, in addition, the
estimation of parameters, an excellent operational system is available
which is based on stepwise least-squares collocation (Tscherning,

1974).
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T

3. Regression

The calculation of the parameters of a least-squares regression
polynomial, in GSPP, is based on the following premises: the data
are error-free and homogeneous evaluation functionals of a surface;
data (and surface) are defined on the Euclidean plane. Then a least-
squares regression polynomial solution, based on the data {xi} , {yi} ,
{fi), i=1, «.o, L £ = flx, y,), is described in Section 2.3 of Part A;
the parameters of the polynomial are given by equation (2.3-2). The
design matrix & = {"ij} = {1 ij) , ®j «+. base-functions, in its -

explicite form , is given by

1’ Xee Yoo X%, b SVAT) Yi, cev, Yi

2 n
1’ x?.' YZ’ xZ’ szz: Y%, s e 0, Yz
1, x., Yp x3, x

1 r *r N1

The corresponding normal equation matrix ¢T¢b (for equal weights) is
unstable for large n. GSPP allows the degree n to vary between 0 and 5;
the degree has to be such that the number of data Iis bigger than the | 1

number of parameters J, withJ =J (n) given by

(n+ 1) (n+2) . e
2

there is no generalized inverse solution allowed in GSPP. If n has “;
been defined such that IS J, the highest possible degree will be chosen, .

For reasons of stability, the coordinates {xi, Yi} are transformed

EEC TGN - & S

i . i t 1) = = i :
linearly such that m‘}?xi, yi) 0 and r%x(x; or yi) 1, depending on
whether the range of x or y is bigger. Theretfore, also the para-

meters {aj} , 3=1, +.4, J, referto these transformed coordinates.
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This has to be taken into account if operations of any kind are to be
applied on the polynomial.

The actual calculation of the least-squares regression polynomial
is performed in the subroutine REGPOL. If the domain of definition
was not specified by the user, it will be defined in GSPP (if REGPOL
is run separated from GSPP, these values have tc be defined). The
output is the vector of polynomial coefficients, normalized ac described
above, the root mean square and average absolute approximation error,
the individual approximation errors (actual function values minus poly-
nomial derived function values) if requested, and a matrix of polynomial
derived function values at the grid points of a user-specified (or GSFP
selected) regular rectangular grid. These grid point values, in turn,
can be used by GSPP for profiling, contouring and a 3-D plot.

In the following we give some examples of how the regression

part can be used.

3.1 Regression polynomial based on irregularly distributed data

In this section a typical application of a least-squares regression
is shown: there is given a set of error-free, homogeneous, irregularly
distributed data defined on the two-dimensional Euclidean plane. A
least-squares regression polynomial of a certain degree has to be
calculated and interpolaied at the grid points of a regular rectan,alar
grid. In addition, the irdividual approximation errors (data reproduction
errors) should be calculated. In the follcwing program the polynomial
degree has been chosen to be equal to 4 which is too high relative to
the number of data which was selected to be equal to 14. Therefore,
the program changes the degree to 3.

In the sequel the program plus input/output are listed.
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S
f i
. i
3 1‘ :
; C AN THAMPLE OF A LEAST-SQUARES REGRESSION POLYNOMIALBASED OR :
i C IRRSCULARLY DISTRISUTED DATA il %
3 . DIIZERGI0Y AlLS,3, 1), ZZ(14) | M
. GOI:ZOLT ZDATAI 1) AYDAT/Y( 1) /ZDAT/Z(14) ~,UCIP/IDUML, MX,NY, . !
! IDUTI2CGY, IWL, IDULSC 17) N ZUCRZ/XLL, YLL, DX, DY /;OoPA}VIOUT i y
A E %9“""’3.).‘133 TaE ”0L"H0;I1~XL INTERPOLATED FUIYGTION VALUES AT 'THE GRID o ;
. - % 3 it o e ¢
é C Paa'T 1§ TIE JUNBER OF DAT! , ‘
> MR ... .CZ.0 ... DATA A"'JJ IRREGULARLY DISTRIBUTED S
. C d vee JZORZE OF POLYNOMIAL K.
b C O, YVO.Y .. DATA LOCATION COORDINATES (X ACROSS(SOUTH - NORTH), N
2 o Y ALSIG 'iu.o'i‘ - IART) .
< =200, Y)Y ... FUNCT:ON VALUES i
Y c 1Y .. =1 0203 ... ALSO CALCOLATION OF INDIVIDUAL APPROXIHMATION ¥
C ET‘C‘."}PS IN TIDS GASE THL ORIGINAL FUNCTION VALU'C"-: WILL BE DES- ; 4
¥ QLD AND RE2VACID DY THT ISDIVIDUAL DATA REPROOUCTION ERAURS O
. C &E‘Zl\lé.mi!'ﬂ!:\u. JEST ARS THE DIMENSIONS OF A AS DEFIRED IN THIS 1
r c POCHRS
H C IR, WY ... KRUIIGER OF CRID POLATS N X ARD Y DIRESTION 4
: < ITCLEZLISTINY, UYLLIE.HYIAX 4
4 ., PN '... Y!I.'IS .(. ' TO(;RDNA' I'E3 OF THE GRID'S LOWER LEFT CORNER (CORRES- ]
G POALE a( 1, ») 1
5 oULOLY ... GRID DISTANCIZS IN Y AllD Y DIRECTION
, C IGUT ... OUT2UT UNIT FOR MISSAGES AND RESULTS
: C I”!;k r‘l. IDUIR(Y) ANL IDUMSC( 1Y) ARS DUIDIY VECTORS
' \AA=
- IT1=0 |
! =4
; [¥i=1
III"' PacTe)
HYIING=3
! :"'“u.‘u;" 1
( T
i Y=C “I
: HLL=99,
. YiL=z=-120.
! D=,
A YR
| lvUY:G
i C READ TOR DA’I‘A (HERE : GENLERATE THE DATA)
! Do ! I=1.ND&
. RCI =8IRS, )10+ 100
i Y 12=60CST In 3 )-.20-1\:0
i ZCI QA8 {:0.05) ST i%0.9)
| i PMAS A )
G CaLL THS ':-UB!‘OUTIN" REGPCL
CALL REG20LCA, MUITAR, NYMNAX, MZMAX, NDAT, IRR)
' [ PRINT THZ D.-‘x".‘.‘. AiD RISULTS
Wl T8E IOUT, GOGO. }
LO 2 [=1,NDAT o
; 2 WRITECIOUT,6001) I, X(L),Y(1),ZZ(1),Z(D) :
' WRITECI0UT, 6002)
;! Do 2 1=1,IK
I I1= EI}’ 141
< 3 WRLITEC IOUT, 6003) (ACIL,J,1),J=1,RY)
6000 TORLIATY l"‘J.-‘»X. ' D YOI Z(D DZ(I)*,77}
GO0l TPOIvIATO:id 4, IR, 2(5X,2F3.2))
€OU2  FOUIATL LWL, 12D
E 208 PO j’&\l‘( ‘1\0.‘1«X.uF8.2)
-:T
1 " RID
, »
" Program corresponding to Table 3. 1.1,
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0.78
0.190
0.15
0.47
0.63

0.22

Table 3, 1, L:
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XD YD

109.09 -119.80
92.43 -80.39
o97.21 —-118.22

109.89 =-88.12
94,56 -115.19
94,68 =86.79

109.91 -110.95

o7.12 -91.52
2.49 -105.84
109.13 -96.91

90.91 -109.27
90.94 -102.56
107.68 -94.67
102.71 -108.00

0.24 0.10
-0.22 -0.49
-0.17 -0.38

0.0¢ -0.11

0.08 =-0.15
-0.56 -0.39

-0.09
-9.32
-0.42
-0.20
~-0.80

-1.12

AGS) DZ(D
.69 0.18
.50 -0.18
.08 -0.438
.13 -0.08

0.73 9.40
.77 0.83

-0.02 -0.38

-0.52 =-0.49

-Q.o 0.038
.12 9.43

-9.,82 =~0.93

-0,9% -0.29
JTe o =0.27

0.93 0.30
-9.19 -0.1%
-0.5¢ -0.40
-0.29 -0.20
-0. 17 0004
-9.50 -0.10
-1.19 ~1.05

0.08

-0.06

0.21
0.48
0.33

=0.66

Third degree least-squares regression polynomial

based on irregularly distributed data x; v; z = z(x,y)

3.2 Regression polynomial based on regularly distributed data

If data are distributed on a regular rectangular grid, and stored

on an array corresponding to this grid, then a slightly modified version

of the above listed program is necessary in order to obtain the regression

field.

The following example may serve as an illustration.

Both regressions described above can also be obtained by .alling

GSPP;

as a 3-D view.

PART C.

the regression surface can be contoured, profiled or plotted

These integrated applications will be described in

i
|
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- C RECRESSION POLYROMIAL BASED ON REGULARLY DISTRIBUTED DATA
DIMENSION A(S3,8,2)

= DY /I0SPAR/IOUT
; tDAT=
i IER=~1

: N=b

: iWi=1

IDIIN=8

' Wm=8

: PLENIAI=D

1 Ilu"G

1 d=3

H XLL= Go.

6o
c 1
-i D

C "GA.') 'I'HE DATA. HERE: GENZRATE THE DATA
Y

o e

(émtue.wcosuxs ))%10
DATA

e
g
o]
jou
=

)

11=3-1
WRITECIOUT, $003) cacll,d,1),J=1,0Y)

CALL THL SUBROUTINE REGPOL

CALL REGPOL(A.IIGIAT, NYMAN, MZMAK, NDAT, IRR)

QQ Qe

VIDTUAL APPROMNIMATION ERAORS
0O & I=1,MH
iz MR- 1+1
WRITEC [OUT, 6008) (ACIl1,J,1),J=1,NY)
CGHTINUE
Do ¢ 1=1,MK
11=80{-1+1
WIITE( !0‘.)"1‘. 6003) (A(IL,J,2),J=1,NT)
3 CONTINUE
6003 FORMAT( l 4X,8r8.2
STO?
END

e

]

Program corresponding to Table 3.2.1

24

CO;._.OJ /J“IP/IJU:H , MX, WY, IDUR2( ), IWL, IDUMB(17) ,N /UCRP/XLL, YLL,DX

PRINT TOE GRID VALUES OF THE REGREISSION POLYNOMIALS AND THE INDI-

T s e e

2 m e g e S

[RSPSRPEVIp. Vo)

i




(ld

5.31
5.89
-9.79
2.7V
7.49
-9,00

-5.22

9.56
-2.68
-7.27

8.79C

4.89
4.56
-9.01
2.55
6.90
-8.238

-4.53
~4.59
8.35
-2.36
-6.39
7.67

Regularly distributed data

AVERAGE ABSOLUTE POLYNOMIAL APPROYIMATION ERROR ...
RIiS POLVKOMIAL APPROMIMATION ERROR ... 5.48
4.06 -0.55 -1.902 -2.40 0.00 -0.05
1.71 -0.48 -0.G8 Q.64 0. 66 0.38
-1,58 =-2,12 ~-1.2% -0, 4% 0.02 9.36
0.25 G.01 0.16 0.0 -0,21 -0.93
2,19 2.39 1.75 0.87 -0.97 -1.51
-4.22 -0.83 0.49 0.24 ~n.30 -0.07
4th degree regression polynomial
1.25 -4,60 5.91 -4.13 4.07 -3.49
3.67 -4.74 5.0¢ -5.20 3.2¢7 =4.17
-8.26 11.62 -7.76 8.79 -7.54 6.17
2,52 -2.069 2.38 -2.87 2.58 -1.82
5.50 -9.66 5.15 -6.75 6.72 -3.49
~4.18 9.61 -8.78 7.44 ~6.60 6.08
Residuals

Table 3.2, 1

s i

v
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4.08 -8.34
4,13 -8.59
-7.52 6.52
2.12 -1.85
5.7 -5.90
-6.91 6.900

2.94
2.98
-5.42
1.58
4.15
-4.98

-0.39
-0.09
0.63
©.66
-1.14
1.04

3.38
38.07
-6.10

-2.28
-2.31
4.20
-1.19
-3.21
8.56

4.804

grid pecint values

-1.17
-0.76
3.94
-2.04
-2.09
2.31

Least-squares regression polynomial based on regularly

distributed data.

P b el i st st t] 337000 _c_ad
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4. Smooth surface representations

One essential part of GSPP is a set of subroutines which is
needed for a smooth representation of a surface by a hicubic spline

function together with a surface interpolation/differentiation algorithm.

4,1 Calculation of spline defining values

This section gives a practical example of how to obtain the spline
defining values by the subroutine BISP, isolated from GSPP. The neces-
sary background and formulas are contained in Section 2.6.2. of PART A.

Let us assume that function values are given at the grid points
of a regular rectangular grid (m=1, ..., M; n=1, ..., N). Then the
bicubic spline defining values is the set {fmn' Pmn* 9mn’ rrnn} , m=1,
eee, M; n=1, ..., N (see Section 2.6.2) of PART A. The function values
at the grid points {fmn} are assumed to be known, the derivatives

{pmn’ 9mn’ rmn} have to be determined. Under side conditions as

explained in Section 2.6.2 of PART A this set of values defines the bi-
cubic spline surface uniquely.
The following program can be used to calculate these values by

using BISP.

AN EXAMPLE OF A BICUBIC SPLINE DEFINING VALUE CALCULATION
DIMBNSION AC10,10,4)
AC.yey]) .. STORES THE REGULARLY DISTRIBUTED DATA
AC.y.,2) ... 1. DERIVATIVES IN X~DIRECTION (ACROSS, SOUTH - NORTH)
AC.y+23) ... 1, DERIVATIVES IN Y-DIRECTION (ALONG, WEST ~ EAST)
ACoy o %) ... 2, NINED XY-DERIVATIVES
M{, NY ... ACTUAL DIMENSION OF THE GRID
OUTPUT UHIT = 6
IX=6
Ny=5
10UT=6
¢ READ THE DATA; BERE: GENERATE THE DATA
DO 1 I=1,MX
DO 1 J=1,1Y
ACL I, D=(SIN(C. 5% 1) +CO5( 0. 6:J) ) %10
CALCULATS ‘ITIS BDEFINING VALUES
CALL BISP(A, 10, 10,15, 1Y)
c PRINT DATA AllD RESULTS
DO 3 K=1,4
WRITE( IQUT, 6900)
DO 2 I=}1,MK
I11=I05-1+1
2 VRUIE( I0UT, 6001) (ACIL,J,K,J=1,RY)
3 CONTINUE
6009 FORIAT( 1110, 1X,//)
6001 TFORMAT(1L9,4N,5F10.4)
STOP?

ElD

Qoo o

€3

Program to Table 4. 1. 1.
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9.6646
14.2881
17.3465

-4¢,2800
~4¢.2800
-4,2E00
-4,2800
~4,28%0

-4.2800

-0.0000
-0.0600
i 0.0000
! 0.6000
; -0.0099
0.60600

+ 5.0248
9.6080
12.71€6

-4,8438
=4.,0841

1
QO
~3

-3
@

-

v C
[
3 O S O 2
>IN ) B S &¢ B N
| O]

"
[
2
i

-5.3229
L3289
-5.3293
=5.8290
-5.8293

~5.5293

/]
<0

ot
&
[&>]

0.9000
-0.0¢C0
D.0€%0
0.£C90
=-0.C0C0
0.CC00

T —— =~ - '“:Fﬁ!
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Table 4.1.1
Bicubic spline defining values ‘
k
N
-0.8608 =-5.9627 -8.4887 ]
8.7127 ~1.8892 -8.9152 Function values at the |
6.8210  1.7199 -0.3070 grid points (data)
X
?.7029  2.6010  0.0759 k
6.1427  1.0408 ~1,4332 v

a.5222 -2.5797 -5.1087

-4.3482 ~4.8482 -4.8432

~6.0341  -4.0841  =4.0041 Dy-derivatives

=2,0657 -2.065¢ -2.0637

©0.3062 0.3262 0.3262
2.7958 2.7958 2.7958
4,0823 4,0828 %.00238

-5.9790 -3.7474 -1.9153
~5.9790  -3.7474 -1.0153
-5.9790 -8.7474 ~-1.9153 Dy-derivatives
-5.9790 -3.7474 ~-1.013%
~5.9790 -3.74T4 -1.9153
-5.9790 -3.7474 -1,0153

0.0000 -90.2000 -0.0900
0.0099 -0.0000 0.v990
=0.0€00 0.0000 -0.G9990
0.C%C0 -0.2090 -0.990900
-0.6600 ~0,2000 0.0999
-0.C990 0.0069 0.0000

Dyy-derivatives

e
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The reader will probably realize that no grid distances have
been defined. This is not necessary because the defining values
returned from BISP are normalized ones: they refer to a square
grid of grid distance equal to 1. The reasons for the normalized
calculation are simplicity and stability; there is no restriction of
generality involved: it can easily be shown that the defining values
referring to a non-normalized grid can simply be obtained by dividing
the x-derivatives {pmn] by the grid distance in x-direction, the
y-derivatives {qmn] by the grid distance in y-direction and the second
mixed derivatives {r,,;,} by the product of x- and y- grid distances.

BISP is designed for a maximum grid size of 300 x 300. The
CPU-time needed increases only linearly with the number of grid
points involved, a good rule of thumb is: numter of grid points #
1.2+ 107 seconds; this number refers to a AMDAHL 470 V/6 -II
The following Table lists CPU- estimates for a couple of

The estimates refer to a AMDAHL 470

computer,
grid sizes n (square grid).

v/6-1I computer:

n CPU-time (sec)
5 0.005
10 0.012
25 0.074 Table 4.1.2
50 0.288
100 1. 162

4.2 Smooth surface interpolation/differentiation

How a bicubic spline is interpolated and differentiated,
is demonstrated in subsection 2.6.3; the formulas (2.6-7a,b) are
optimal in terms of computer time (PART A).

The interpolation/differentiation of a spline is a 3-stage process:

-
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In the first step the grid element, corresponding to the
coordinates of the calculation point, has to be found: with (x4, yy) the
coordinates of the lower left grid point and (h\, hy) the grid distances
in x- and y- direction, the grid element indices are, for a point (x,y),

simply given by

m = int((x-x4)/h) +1, =n = int((y—y,/hy) + 1,

(int...integer), if the calculation point (x,y) is located within the
domain of definition of the bicubic spline.

The second step consists in the calculation of the 16 coefficients
of the bicubic element. A straightforward way would be a calculation
using equations (2.6-5a,b); which gives the 4x4 matrix of coefficients

as a product of three 4x4 matrices (see PART A).
A = HT(h)FH(hy) .

This operation involves 128 multiplications and 128 additions and uses,
even in the normalized version (h, = hy=1)’ 700 micro-seconds to
calculate all 16 coefficients (the matrix A)., Since A hasto be cal-
culated, in general, for each calculation point, it is very important to
optimize this algorithm in terms of CPU-time. After many trials I
found a very fast and probably optimal solution which involves no
multiplication and only 58 additions; the time elapsed for the calculation
of all 16 coefficients using this fast algorithm is asiittle as 58 micro-
seconds which corresponds to a 12-fold gain in calculation speed.

The following Table lists CPU-estimates for the calculation of
all 16 coefficients for all elements of varying size square grids

(n xn elements). The estimates refer to a AMDAHL 470 V/6-II computer:

n CPU-time (sec)
5 0.0015
10 0.0058 TABLE 4.2.1
25 0.0363 '
50 0. 1450 :
100 0.5800 i
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The subroutine BILDE is responsible for the calculation of the

At A o1 ot .y

coefficients.
C

L1 0 it

After these two steps the actual interpolation/differentiation can
1L be performed. Sirce all calculations in the bicubic spline algorithms |
] refer to a normalized grid of unit grid distances, the relative ,
coordinates of the calculation point are also to be referred to this |

= unit grid distance; for a point (x,y) they are simply given by

4 ——
f

i X = (rxg)/hy - (mes), 7= (y-yy)/by - (me)

with (m,n) element indice~ as defined above. The interpolated/differentiated

B VT IO NSRS W

r

3 bicubic spline at a point (x,y) (within the domain of definition) can then :
be obtained by the set of formulas (2.6-7a,b) of PART A after division
by the appropriate grid distances, The calculation itself is performed

in the subroutine BSFC. The subroutine is designed such that it can

provide all spline derivatives

Qa
é__&{’_Y). a:al+az$4, Oy, azsg

%y (% '

ax
(BSFC is not designed for third order derivatives with respect te »
and/or y.)

The following Table gives a listing of CPU-time estimates for
the interpolation/differentiation part and for the total CPU-time used

’ (index finding, calculation of parameters, interpolation/differentiation).
E
E
F

] The following Figure 4.2.1 with the corresponding Table 4.2.3

shows the function wvalues of 25 regularly distributed data, the corres-

¢ ponding spline surface, and lists interpolated/differentiated values.

The program below has heen used to generate the output given in

, Table 4.2.3.
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A BICUBIC SPLINE IRTERPOLATION/DIFFERENTIATION EXAMPLE
ACo,oye) ... ARBAY STORING THS BICUBIC SPLINE DEFINING VALUES
IoGIAX, NYMAX ... IIA(INUM 1. AND 2. DIMENSION OF A
I, HY ... ACTUAL 1. AND 2., DIMENSION OF A
A, DY ... GRID DISTANCZS IN X AND Y - DIRECTION (ACROSS, ALONG)
{L. XU ... LOWER AilD UPPE ] - BOUNDS OF THE DOMAIN

YU ... LOVER AliD UPPER Y - 30UNDS OF THZ DOMAIN
Ne' ... NUISER oF CALCULATION POINTS PROCESSED
X, Y .. COORDINATES OF 'I"‘" CALCULATION POINT (ACROSS, ALONG)
IR, ¥NR ... JORMALIZED RELATIVE COORDINATES FOR EBSFC
13, IY ... HIBER OF DERIVATIVES IN X AWD Y - DIRECTION
DII=HS 10H A(S,5,9)
COITION /LOM2/:4R, YNR, DX, DY
Ma=5
I‘VI‘ ) ‘7—?"
I5=5
l‘V—L

AOC:OAGIOANAN
~A

Cc 5i1;}w; YL, YU} ARE TEE DOMAIN LIMITS
5{:::;
HU=IG+(I08= 1) %xDX
YU L+ (NY=-1)%DY

c PRINT DOMAIN AND GRID I'IFORMATION
VRITE(6,9003) XL, XU, YL, 7U, DX, DY, X, NY
c ;‘5‘%’ '{mi. %’,nx{cumc SPLINE DEFINING VALUES; HERE THEY ARE GENERATED
B0 @ J=l.NY
1 ACI,J, D= C(SINCIXL. )+COS(J*2,) ) %10
{3} CALL BISP(A, MK, NYMAK, MX, NY)
: C NEAD THE NUIBER OF CALCULATION POINTS
: READ(S, %) NC
ga(x)mm.ooom
3 1i=0_
: BO & I=1,HC
& ¢ RTaD ALL CALCULATION POINT COORDINATES AND THE NUMBER OF DIFFEREN-
< < 'ru\'rxou., IN XC(ACRO3S) AND Y(ALONC) DIRECTION
gl EAD(S, %) HK,Y, I, 1Y
Y] ™ IF A CALCULATION POINT TAPPENS TO BE OUTSIDE THE DOMAIN, PRINT A
3 R € IZSCACE ANND GO TO TIE NEXT PO(NT
p YF(, G2, 2L, AND. X, LT, XU, AND. Y. GE. YL. AND. Y.LT. YU) GOTO 3
z}ﬁ TRITE(6,6000) 1.X.Y, IXTY
r4 COTH
() A 5 CCHTIHIVE
W N g;'"gz.(\'r Tg(_'-: EISMENT BNDICES AND THE NORMALIZED COORDINATES
¢ i3 e e
oo iCIRe i- (I
o R M= 00+ 1
R é Y= (Y-YL) /DY
N W= INTCYI)
eI YHR= YH=HN
o8 HH= i+ 1
> c CIBCK IF THE INDICES HAVE CHANGED RELATIVE TO THE LAST CALCULATION
g Pg{ il{‘ IT YOT, TIE POLYNOMIAL COEFFICIENTS NEED OT BE CALCULATED
&
u:‘lc;x £Q. M. AND. N, EQ.NN) COTO 4
=i
c ALCULATE TOE COEFFICIENTS OF THE BICUBIC POLYNOMIAL
) gf}ﬁm gn LOECA, HXMAY, NYHAY, M, N
¢ mnmowrxou/olrx-;nm'rmrmu
'r-ccvcu.(,x v)
c PRINT TIE R..oU'

TRITE(6,6001) .4{ ¥, I, 1Y, 7
2 conT IR
6000 FOULT(150,4%,13,3X,2F10,2,3%,213,2X,’ OUTSIDE DOMAIN®)
6001 I‘OF"\T( 120,44, 15, 2X, 2r10.48,8X.2 13...}’ Flo.2)
6C02  TFORIIATY 1.10.‘1} . I « Y IX 1Y F',/7

3G00C FOE‘&IIAT( 151,43, BOMAIN LIMITS AND G\ID PARAMETERS',//,9%, 'XL ,.
‘22.',5’!0.2.5}(,‘}{1! ...'..-ll).... .9‘{. YL ... .FIO.... 4(,'YU ...'. F10.2,
{ ?1{{‘)‘9:; )...’,I"IO...,54{, DY ...*,F10.2,/,9K,"MX ...”, [10,9X, NY ...

\"!‘
D
Program corresponding to Table 4.2,3
e A e ———— e+ . . d

s

D Bel o i s Sl RO 355
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only inter- total CPU-time
] 0 Q pol /diff, (microsec.)
- 0 0 18 76
] 1 0 19 17
1
0 1 19 77
2 0 18 76
1 1 21 79
0 2 28 76
2 1 20 78
1 2 20 78
2 2 19 77
Table 4.2.2
CPU - time estimates for 2-D spline interpolation/differentiation
DOMAIN LIMITS AND GRID PARAMETERS
XL ... 1.00 X0 ... 11,60
e -1.60 YU ... 15.00
DX. ... 2.50 DY ... 4.00
MK .., 5 HY ... 5
1 X Y IX I F
1 3.27 7.38 0 0 19.12
2 8.53 2.11 1 0 -2.20
3 1.16 10.24 0 1 -4.04
4 13.13 7.55 S 0 OUTSIDE DUMAIN
5 1,10 14,12 11 0.00
. o 9.99 2,58 0 2 2.31
7 6.34 12.21 2 1 0.09
\ 8 7.51 3.7? 1 2 ~-0.00
9 -7.22 10.59 2 2 OUTSIDE DOMAIN
’ Table 4.2.3: Bicubic spline interpolaticon/differentiation
|
k ' » R LT — T - o o )

Wl o

Y

e o




-140-

- e A e g
iy e

/i,

~-13.

1 10.0 ~

=13,

7.5 -

sxrves e
]
LS

2.5 -

N i v o s

-"A/L N

N

12.0

0.0 8.0

} Figure 4.2. 1: Data distribution and corresponding bicubic spline

surface contour plot.
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4.3 Data approximation errors

Whenever the function values of the surface are predicted at
the grid points of a regular rectangular grid, and the surface is
represented by a bicubic spline, interpolating these grid values, the
irregularly distributed homogenous data are, in general, not repro-
duced. It is obvious that the data reproduction errors (the difference
between the actual data f; and the corresponding surface value fi)
decrease with decreasing grid distance; if the error norm is defined
in terms of the maximum error,

He“ := max |f; - fil,
i

the error norm goes to zero. This, however, does not necessarily
mean that the spline representation of the whole surface is getting
better with decreasing grid distance. Nevertheless, the above error
norm provides a first estimate of how well the data are reproduced.
The subroutine REPRO is designed for the calculation of the
individual data reproduction errors, the average absolute, and the root
mean square (RMS) approximation errox. Whenever the individual
errors are calculated, the original function values will be destroyed
and replaced by the corresponding approximation (reproduction) errors.
If a data point happens to be located outside the surface domain, it
will not be considered for the data reproduction error calculation and
a value of 99999.99 will be assigned to its error. The average and
RMS errors are edited on the lineprinter (or any other assigned output
device). The following example may illustrate an isolated use of the
subroutine REPRO. Further information can be found in the comment

statements to REPRO
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TEST OF THE UVATA REPROQUUCTION ERROR CALCULATION PROGRAM °*REPRO®
DIMENSIUON A(259¢2594)y 22(100C)

COMMON /XDAT/X{(100) /YDAT/Y(100) 7ZDATZ/Z(100) /UCIPZIUP(32)
»/UCRP/UP(30) /7IQSPAR/NUUT

DATA MXMAXeNYMAXIMZMAX/72225+4/

ANPUT UNIT <se INPUTs QUTPUT UNIT oee NOUT

INPUT=S

NOUTz=6

READ THE OUOATA

READ ThHE DATAs ERROR INDICATES END OF DATA SETs COPY 2(.}
ONTO Z2Z(s)

N=1

READ(CINPUT o= ERRZ19) X{(N)e YIN)e Z(N)

ZZIN)=Z(N)

N=N+1l

60TO 18

NOAT=N-1

WRITE(NOUT »5u01) NDAT

FORMAT(1HO 24X+ *NUMBER OF DATA FOUND IN OATA SET see *9IS5¢7)
READ AND ECHU SURFACE ARRAY PARAMETERS

READ(S5¢%) TUP(2)e TUP(3)e (UP(I)eI=le®)

WRITE(NOUTe5u02) (UP(L)el=104)e IUP(2)e¢ IUP(3)
FORMAT (LIHD o4 X o *SURFACE ARRAY PARAMETERS 2$°9795X0

**COORUINATES OF LOWER LEFT SURFACE ARRAY POINT ¢ X = '9F10.2

' Y T *9F10.2¢/95X9*GRID DISTANCES IN X=ANO Y-DIRECTION :°*s
22F 1049/ ¢5X9 *NUMBER OF GRID POINTYS IN X<-AND Y-UIRECTYION :°%»
#2154/7)

READ THE SURFACE ARRAY A(everl) AND ECHO IT

READ(Sen) (CACI2del)sdTIroIUPU3I) ) IS IUP(2) 0l s-1)
WRITC(NOUTe60L00)

FORMAT(LHG oM Ao *FUNCTION VALUES AY ThE GRID POINTS :%977)
CALL DRUCK(AsMXMAX NYMAX o MZMAXe JUPL2) o JUP(3) o1 oUP(1) ¢UP(2)9UP(3)y
sUP(4)936389300:0)

CALCULATE THE SICURBILC SPLINE REPRESENTATION

CALL BISPUA'HXMAXsNYMAX2IUPL(2)sIUP(3))

CALCULATE THE DATA REPROUUCTION ERRORS

CALL REPROCASMXMAXINYMAXINDATe 3)

PRINT THE DATA AND THE INDIVIDUAL ERRORS

WRITE(NOUTs7u00C)
FORMAT(1HO 98X e *SPLINZ DATA REPROUUCTION ERRORS %o/
x5Xy? I X¢I) Yii) {0 ERR(I} /)

DO 7001 II=1+NDAT
WRITE(NOUT»70L02) IXs X(IXd» Y(II)y 2ZC(II)e 2¢I1)
FORMAT(1H +2XsI5+4F10.2)

STOP

END
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NUMBLR OF OATA FOUND IN DATA SET e 17 [

SURFACc ARRAY PARAMETEKS @ ,
COORWINATES OF LOWER LEFT SURFACE ARRAY POINT : X = 47.67 Y = 14,00 )
GRID O1STANCES [N X-ANO Y-UIRECTION @ <0417 00067 '
NUMBLR OF UR1ID POINTS IN X~ANO Y-DIRECTION @ 8 8

rUNCTION VALUES AT THE GRIU POINTS @ .
long. 14 «0 14 8.0 14 8.0 14 12.0 14 16.0 14 20,0 14 24,0 14 28.0

lat.
47 57.5 ~11.39 =-22.17 “e12 ~12.18 =11 .53 -8.71 -10,20 -1€.15
47 55.0 ~10.25 -9.21 +9.04 “11.25 ~11.53 ~9. 78 ~10.73 15,96 R 1
47 52.5 -13.25 -13.83 ~18.62 -18 .43 ~11.81 -12,.33 -12,01 -13.79
47 50.0 -13.26 ~13.23 -11.79 =11.55 -15.92 -10.89 -12.37 -12.05 ;
47 47.5 -13.51 ~15.99 -10.65 -28.93 -20.28 ~20.,53 -20,01 ~18.73
47 &45.0 -18.50 «19.75 -20.72 =19« 62 =28, 49 -A8.33 -15.81 ~14.29
4T 82,5 -17.15 «17.06 -19.28 =28 .45 =19,.44 =19.4% -19.78 ~19.54
A7 80.0 «18.,62 -18.79 -19.31 -28.48 -22.72 =18.64 ~16.89 ~17.44
AVERAGE APPROXIMATION ERROK eee «723
RHS APPROXLIMATION ERROR oo +848 H

SPLINE UATA REPROOUCTION ERRORS ¢

i X}n Yen 1) ERRLID ‘
1 47.88 18,26 -11.35 I

P 47 .84 18.26 =313.8¢4 93

3 47.77 1417 ~22.93 ~e0)

4 47.72 14,33 =20 .64 =1.463

5 47.93 18,25 -12.36 - 83

é 4T .96 14.01 -18.02 100000,.00 3
7 47.70 18,14 -21e37 .93

8 48.15 18,43 =131.33 1006000.0C

9 48.19 14,36 -14,02 10U000,00
10 87.75 18,.3% "7.“‘ Y
11 4779 18,23 -24.91 1. 26 i
12 47,93 184,07 =938 -.20 f
13 “7"2 15.52 "0-70 100000000 !
1 48.16 18,53 =10.84 100000.00 .
15 47,69 18019 <2044 .88 j
1o 47.77 leeld -19.10 N1} !
17 48.18 18,03  -17.19 100000.00 |

e

i
i
%
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5. Axis plot

Axes are plotted automatically by GSPP in connection with
profile and contour plots, unless its plotting is suppressed. The
subroutine ACHSE is responsible for the axis plot. It is designed '
for virtually all different cases: arbitrary direction, scaling, tick
marks right-or leftbound, scale numbers right or left of axis in four
different directions (integer multiples of 90°), variable number of
decimal digits, variable height of scale numbers, variable tick mark
length, variable distance (axis, scale numbers), and many other
options more, For a detailed reference see the comment of the program
listing.

In the following three examples of axis plots are shown. Axis
n corresponds to the n'th call of ACHSE in the subsequently listed

test program.
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FAXHEL L8 OF DIFFERENT AYIS PLOTS
A DESCIRIFTION OF THE INSUT C(AND QuTruT)
PWOTHE SLURROL INE CACHSE -

LALL PLOTS(a . 0, , 1)

FEOT OUNLT

Sall AUHRE(I W, 9, . -

NI_obXe, WTH)

RALL ACISCGR, 11,100, , 200, ,25,,2, b0,

F TA B u,n‘) N1H,

Jabie A lnﬁ‘- ' ltu. iR ’\(_)U uS@(‘).
1, N0, 41 W)

CALL Ty AT (0. 0, . 9ug)

IS

tNh

axis No. 3

,2.0,,9,,0.
:2(”- "3‘!25\"6’-4’11 11-‘0-25,1o

"5(')('). ,2;3‘:"(‘)- E:‘:S(’).‘ -é’.a,@“:’,l. ,1- ‘(')ua’

s s oy

NHISPEGEIQB”vrguﬁhi
7y
ﬂﬁﬂﬂQQEXFENHSJEDgoﬂm;%ffffgfsg

PARAHETERS CAN BE FOUND {?

,vi,@,i,

n;

L0.5,1.,1.,0.3,1,

axis No. 2 , g

Figure 5.1: Examples of axis plots
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6. Grid plot

Superimposing a grid over a contour plot simplifies a possible
interpolation process. GSPP assures that the individual grid interval
is identical with the tick mark interval, if an integrated grid plot is
requested. But a grid of arbitrary shape, size, and orientation can be
superimposed also externally. This is done by the subroutine GRIPLO.
A number of options can be chosen by the user: A rectangular grid
can be full line grid, a dashed line grid, or simply consist of open
crosses at the grid points (intersections of grid lines); the grid can be
arbitrarily oriented, can be shifted arbitrarily relative to the lower left
corner of the grid area, the grid distances in x- and y- direction are
arbitrary, the plot of a bounding rectangle (representing the grid area)
can be suppressed, and other options. For a detailed information
see the comment statements in the sub-routine GRIPLO. Some grid

examples are shown below.

FXAMEL TS OF DIFFTRENT 6RID PLOTS

A DEGURIPTION OF YNPUT IPARAMETERS CAN DE FOUND 1IN THE SUBROUTINE
CERTEN U

CALL PLOTS 0, , 0., 1)

PLOT LT ¢ CENTIMETER

CALL BRIPLOCE, ;9. ,8.,6.,0.8,0,6,2.,1.5,4,4,0.5,0,,0,,08,1)
TALL HNIPLU(II.,IO.,8.,6.\0.,9.,1.,2.,9,4 0.2,1.,-20,,60,1)
CALL ARIPLOCE, ,1.,8.,60,0.,3.,10,.,1..9,7,0.1,1.5,0,,1,0)
CALL \'l'\IH(l(il J1.0,8,,6.0,0.5,0,,2,2.5,4,8,-0.2,2.,06.,8,1)
ALl v OTew, ‘l"*?)

s

HEL)]

e ———_

AT ahee e b S




an eSS AL T S5

-147-

cmumntberccera -

. 0 G 0 e o R 6 By ey o S e 0 O g et R e S

VPO DUV YRS JEUPR FSIUPIL JOVUOUPIN FPRSEIVOOt NPt

"'—-'F""'L""'"“"L"“""""L""‘F""—

B Lt T A L T e Lt

P e e L LR L L L]

B L L L L T R e e L L

Examples of grid plots

1:

4
O.

Figure

s




P S

e s et e i i ® e

-148 -

7. Title plot

The description of plots (bead, axis labels) is performed by the
subroutine TITLE, a partof GSPP. The main purposes of this program
are:
a) find the number of lines of alphanumeric characters which belong
to the title (in connection with GSPP, a maximum of 10 lines is
allowed; in isolated applications, a maximum of 100 lines can be
plotted by a single call);
b) find the number of alphanumeric characters per line (max.=80)
and the maximum number of characters;
c) find the maximum actual title length and height, compare it with
the corresponding allowed maxima, and reduce the symbol height, if
necessary, (*)
d) Shift the title lines; four different title line patterns can be
obtained: the title lines can be plotted as appearing on the punched
cards (or any other input device); the title lines can be shifted to
the left (leftbound); the title lines can be shifted to the right (right-
bound); the title lines can be centered.
Moreover, the title can be put into a rectangular frame, called title
boundary rectangle; the title can be plotted in any direction (0°-360°),
0° is the horizontal mode; when plotting on an electrostatic plotter
like the Versatec, the line width can vary between single and 5-fold
linewidth. The title itself is stored on a 2-dimensional array, each
column representing a 80-character string (1 card).

Some typical examples are shown below. For more information

(title and parameter transfer) see the comments in the subroutine TITLE.

(*) If a symbol height reduction is necessary, a message will be

edited on the assigned output unit.

i
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LXAMIM w0 OF MIFFERENT TYTLE PLOTS

DYMEMEION 121 ¢R0,19)

EHEHOS AT ENY, SHNR, THHAX  XLTH,ROT | IPEN, IC, TWS

: ALYTAUX /W, SHINCH, TH TITLTH, X, ICY,I (C,NRL., HAX /I03PAR/IQ
104

RLAD 16 NUSATDER OF TITLE LINESR

RUAD G )Y N

READ 10 TY1HHEF PARAMETERS

WLAD G ) X Y BHNR THHAY  WH, XL TH,ROT ,CHINCH, ICV, WS, IFEN,IC,LC
READ O 1) (RAGH QULUMN OF TITC.  .) CORRESPUNDS TG ONE (1)
PITLE 1 IND

READCe S COiXreY ), 1= ,20), J=1,/NTL?

PORMA LN

CALL DT Qrsde, o, 16)

AL TITLECTY 1

THar @

1P N=

Wil e,

Yo,

GALL TITLECIIT, 103

10y

FEC I B

R =W

[
[N

CALL TITLECHIT, 18)
NG

T e

Ve, N

DALL TYTLECIIT, 16
CALL 14T (e, (0,,999)
Loap

I N

input parameters:

5
00’ 200. 00 3, 50, 10' 180, 00, o. 3937’ 0, l, 5, 11’ 0

the 5 title lines

Cod

JUVIVEN P




-150 -

THIS 15 AN EXAMPLE OF AN AUTSHATICAL TITLE PLOT
USING THE SUBROUTINE TITLE (A PART BF O3PP3.
THE TITLE CAN HAVE A MAXIMUM NUMBER 8F 150 LiNE
IN CONMECTION WITH R PROFILE, CONTOUR OR 3-D PL
ONLY 18 LINES,

THIS IS AN EXRMPLE OF AN ARUTGMATICAL TITLE PLOT
USING THE SUBROUTINE TITLE (R PART OF GSPP).

THE TITLE CAN HRVE A MAXIMUM NUMBER OF 100 LINES,
IN CONNECTION WITH A PROFILE, CONTOUR GR 3-D PLOT
OMLY 10 LINES.

THIS IS AN EXAMPLE OF AN RUTOMATICAL TITLE PLOT
USING THE SUBRGUTINE TITLE (A PART OF GSPP).

THE TITLE CAN HAVE A MA. "MUM NUMBER OF 100 LINES,
IN CONNECTIOM WITH R PROFILE, CONTOUR GR 3-D PLOT
ONLY 10 LINES.

Figure 7.1: Examples of title plots
(The title and the top correspond to the first call, the

title at the bottom to the last.call of the subroutine TITLE.)
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8. Range division
A particularly useful element out of GSPP, is the subroutine ‘

RNGDIV; it is frequently used in GSPP for the purpose of replacing

the human decision process like finding ''optimal'' contour intervals,

""optimal!' grid distances, or ''optimal'' tick mark distances. !''Optimal!!

is interpreted in terms of a most reasonable unbiased decision.

The main objectives of RNGDIV are as follows: given a range

on the real number line by a start- and endpoint (lower and upper

bound); the range should be divided into intervals of the form .
i

(0.1, 0.25, 0.5) * 10K b
|
!

with k an integer; the maximum number of intervals can be chosev by
the user; there is the possibility of adjusting the interval start- and |
endpoint such that the interval start- and endpoints have ''coordinates'!

of the form
(a®* 0.1, B* 0.25, y* 0.5) * 10*

with @ =1, ..., ; B=12, 3;9% =1, 2. The adjustment can be a
range extension or a range contraction (e.g. in contouring). The program
returns, apart from the calculated interval length and the number of ‘
intervals, also the recommended number of decimal places for a graphi-
cal representation of the scale numbers. (Recommended is: 3 significant
digits, if the maximum scale number is greater than 100, only integer

representation of the real scale number,) A special application is the

estimation of the number of significant digits for a specified range.
In the sequal a couple of range division examples, calculated using
RNGDIV, are listed. Further information can be found in the comment

statements to RNGDIV.
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9. Clipped boundary line plot

In connection with contour plots in regions of arbitrary shape
it is often requested to plot the boundaries of these regions with the
restriction that the boundary lines should be clipped off at its intersec-
tions with the boundary of the rectangular plotting domain,

The subroutine BNDPLO is designed for this purpose. It accepts,
in principle, an arbitrary number of (district) boundary lines which can
be plotted with different line widths on an electrostatic plotter or in
different colors on a multi-color plotter,

In order to clip off the line plot at the boundary of the rect-

angular domain, each line element passes a procedure like that described

in section 2.8.5 which provides sufficient information about
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the location of the line element relative to the rectangular domain. The L

actual intersection uses a simple line intersection algorithm. If so

desired, the boundaries can be mapped according to an arbitrary mapping
equation, X = x (=, v), ;r. = ; {x,y), which has to be provided by the user ' !

(subroutine GSPROJ). |

The following example may illustrate the use of the subprogram.

c TEST OF THE SUBROUTINE ‘BNDPLD’. FOR DETAILS SEE THE
c COKMENTS TO “BNDPLO’. R
DIMENSION FORMD(1@)
COMMON /XBOUND/X(166) /YBOUND/Y(168) /BOUINF/NAE(R29) *
* /BOUPEN/NPEN(1@) /CCLIP/XL,XU,YL,YU !
INPUT=S b
NOUT=4 \
c READ AND ECHO THE NUMBER OF BOUNDARIES, ITS START- AND
c EMDPOINT LOCATIONS ON THE VECTORS X(.) AND Y(.) AND THE |
c CORRESPONDING PENWIDTHS NPEN(.)

READCINPUT, %) NAEC1)

N=NAE (1)

NB=RENAE(1)+1

READCINPUT %) (NAE (1), 1=2 NB)
READCINPUT , %) (NPENC1),I=i N)

WRITE (NOUT, 16) '

10 FORMAT (1H®, 84X, *BOUNDARY LINE INFORMATION YECTOR NAE(.)’, !
€/ ,5X,° 1 NAE(I) NAE(I+1) NPEN(1/8)*,//) ;

PO t Ix2,NB,2

11=1+)
12=1/2 3
1 URITE(NOUT,11) I,NAECI),NAECI1) ,NPEN(IR)
N=NAE(11) &
11 FORMAT(IH ,4X,15,19,18,116)
c READ INPUT FORMAT FOR BOUNDARY COORDINATES
READCINPUT,14) FORMD .
16 FORMAT (10A4)
¢ READ AND ECHO THE DBOUNDARY COORDINATES
WRITE (NOUT,18)
12 FORMAT (1HO,4X, BND# 1 Xcn YC1)7,/77)
; N=NAE (1) :
DO 2 1=1,N k

1S=NAE (2%1)
1ESNAE (2R141)
DO 2 J=18,1E L
READ CINPUT ,FORMD) X(J),Y(J)
2 URITE(NOUT,13) 1,J,X¢J),Y(D oy
13 FORMATC(1H ,4X,215,5X,2F10,2)
READ AND ECHO LOUER AND UPPER X- AND Y-COORDINATES OF
THE RECTANGULAR PLOTTING DOMAIN
READ CINPUT, %) XL,XU,YL,YU
URITE (NOUT,14) XL,XU,YL,YU
14 FORMAT (1HO,4X, PLOTTING DOMAIN LIMITS t“,//,5%, '
$/XLOVER ... °,F16.2,5X,’XUPPER ... *,F10.2,/,5X,
. $/YLOWER ... “,F10.2,5X,”YUPPER ... /,F16.2)
c READ AND ECHO PLOT PARAMETERS (ORIGIN, SCALE)
READCINPUT %) X0,Y8,FAC
URITE(NGUT,15) X8,Y8,FAC

OO

B e o e e i e

e e e o . e =

|

!

. 15 FORMAT(1HO,4X,‘PLOT PARAMETERS 17,/7,5X,“X0 ... \

2F16.2,5X,°Y0 ... *,F10.2,5X,’FAC ... *,F10.8) b

) c INITIALIZE PLOT '

d CALL PLOTS(@.,0.,19) i
S CALL FRAME(6,9.,160,,0.,78.) {3
c PLOT THE BOUNDARIES »
CALL DNDPLOCXG,YS,FAC,6,8,8) |
: c PLOT THE BQOUNDARY RECTANGLE OF THE PLOTTING DOMAIN |
: CALL RECT(Yu,X6, (YU-YL)/FAC, (XU-XL)/FAC,0.,1) "

$TOP PLOT
CALL PLOT(S.,0.,999) ’.
sTOP |
END
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Input data to the above program

e et e s e s il A= e s ki e grione

1 5

) 1,9,10,26,27,33,36,40,31,47

3 1,2,3,1,2

] (9X,BF16.2)

] 1 @ 45.80 -21.80

6 i1 3 41,60 -16.40

7 l . 41.80 "9"0

s 1 S 45.20 -15.20

) 1 ¢ 50,560 -14.69

10 17 54,90 -17.29

11 1 8 59.20 -18.60

12 1t 9 50,90 -18.80

13 1 1e 4&5.86 -21.80

14 B 14 55.00 5.20

15 B 1S 62.09 1.80

16 2 14 68.00 -4,68

17 2 17 84.68 -6,00

18 2 18 B8b.46 -3.80

19 2 19 88.20 -9.86

26 2 ge B8B.20 1.40

3] B 21 81.80 6,40

Bp 2 g2 78,80 11,60

B3 B 23 78.00 £1.26

24 P P4 75.40 24,00

eS 2 25 62.40 BB, b8

BS 2 26 50.46 25,26

27 2 27 45,86 23.68

28 B BB 46,90 12,86

29 B B9 49.89 7.80

30 2 30 55.99 5,20

31 3 3 71.40 11,88

3e 3 37 75.29 4.80

33 3 38 62,00 6.40

3¢ 3 39 S5.20 9.80 (///"\
as 3 46  54.00 12,48 \
36 3 &1 54.va 14,44 :
37 3 a2 4,80 16.20 \

38 3 43 69.20 19.20

39 3 &4 71.40 11,86

40 4 45 39.40 35. 60 \

a1 4 46 S4.80 32, 864 \

ap 4 47 55.90 40.2%

43 4 48 50,60 35,40

a8 4 49 39.40 35,660
45 s 52 103.46 R2. 66 \”
a6 S 53  84.80 33.40 i
a7 5 5S4 68.00 28,06

a8 5 55 b61.80 29.80

49 S 56  63.60 35,00

se s S7 79.86 39,84

51 5 S8 193.49 42,68

52 £5.2,92.2,-12.5,49,0

53 3.,3.,5..

> V

Figure 9.1 FExample of clipped boundary line plot corresponding to

the above input data
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